Classification of Plasma Cell Disorders by 21 Tesla Fourier Transform Ion Cyclotron Resonance Top-Down and Middle-Down MS/MS Analysis of Monoclonal Immunoglobulin Light Chains in Human Serum

Lidong He, Lissa C. Anderson, David R. Barnidge, David L. Murray, Surendra Dasari, Angela Dispenzieri, Christopher L. Hendrickson, Alan G. Marshall

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

The current five-year survival rate for systemic AL amyloidosis or multiple myeloma is ∼51%, indicating the urgent need for better diagnosis methods and treatment plans. Here, we describe highly specific and sensitive top-down and middle-down MS/MS methods owning the advantages of fast sample preparation, ultrahigh mass accuracy, and extensive residue cleavages with 21 telsa FT-ICR MS/MS. Unlike genomic testing, which requires bone marrow aspiration and may fail to identify all monoclonal immunoglobulins produced by the body, the present method requires only a blood draw. In addition, circulating monoclonal immunoglobulins spanning the entire population are analyzed and reflect the selection of germline sequence by B cells. The monoclonal immunoglobulin light chain FR2-CDR2-FR3 was sequenced by database-aided de novo MS/MS and 100% matched the gene sequencing result, except for two amino acids with isomeric counterparts, enabling accurate germline sequence classification. The monoclonal immunoglobulin heavy chains were also classified into specific germline sequences based on the present method. This work represents the first application of top/middle-down MS/MS sequencing of endogenous human monoclonal immunoglobulins with polyclonal immunoglobulins background.

Original languageEnglish (US)
Pages (from-to)3263-3269
Number of pages7
JournalAnalytical Chemistry
Volume91
Issue number5
DOIs
StatePublished - Mar 5 2019

ASJC Scopus subject areas

  • Analytical Chemistry

Fingerprint Dive into the research topics of 'Classification of Plasma Cell Disorders by 21 Tesla Fourier Transform Ion Cyclotron Resonance Top-Down and Middle-Down MS/MS Analysis of Monoclonal Immunoglobulin Light Chains in Human Serum'. Together they form a unique fingerprint.

  • Cite this