CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor

P. Liu, T. P. Kao, H. Huang

Research output: Contribution to journalArticle

100 Scopus citations


The forkhead box O (FOXO) transcription factor FOXO1 functions as a tumor suppressor by regulating expression of genes involved in apoptosis, cell cycle arrest and oxidative detoxification. Here, we demonstrate that cyclin-dependent kinase 1 (CDK1) specifically phosphorylates FOXO1 at serine 249 (S249) in vitro and in vivo. Coimmunoprecipitation assays demonstrate that both endogenous CDK1 and ectopically expressed CDK1 form a protein complex with FOXO1 in prostate cancer (PCa) cells. In vitro protein binding assays reveal that CDK1 interacts directly with FOXO1. Accordingly, overexpression of CDK1 inhibits the transcriptional activity of FOXO1 in PCa cells through S249 phosphorylation on FOXO1. Consistent with the roles of FOXO3a and FOXO4 (two other members of the FOXO family) in cell cycle regulation, forced expression of FOXO1 causes a delay in the transition from G2 to M phase. This effect is blocked completely by overexpression of CDK1 and cyclin B1. Ectopic expression of constitutively active CDK1 also inhibits FOXO1-induced apoptosis in PCa cells. Moreover, we demonstrate that the inhibitory effect of FOXO1 on Ras oncogene-induced colony formation in fibroblasts is diminished by overexpression of CDK1. Given that CDK1 and cyclin B1 are often overexpressed in human cancers including PCa, our findings suggest that aberrant activation of CDK1 may contribute to tumorigenesis by promoting cell proliferation and survival via phosphorylation and inhibition of FOXO1.

Original languageEnglish (US)
Pages (from-to)4733-4744
Number of pages12
Issue number34
StatePublished - Aug 7 2008



  • Apoptosis
  • CDK1
  • Cell cycle
  • FOXO1
  • Phosphorylation
  • Prostate cancer

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cancer Research

Cite this