Abstract
Regulation of intracellular Ca2+ concentration ([Ca 2+]i) is a key factor in airway smooth muscle (ASM) tone. In vascular smooth muscle, specialized membrane microdomains (caveolae) expressing the scaffolding protein caveolin-1 are thought to facilitate cellular signal transduction. In human ASM cells, we tested the hypothesis that caveolae mediate Ca2+ responses to agonist stimulation. Fluorescence immunocytochemistry with confocal microscopy, as well as Western blot analysis, was used to determine that agonist receptors (M3 muscarinic, bradykinin, and histamine) and store-operated Ca2+ entry (SOCE)-regulatory mechanisms colocalize with caveolin-1. Although caveolin-2 coexpressed with caveolin-1, caveolin-3 was absent. In fura 2-loaded ASM cells, [Ca2+]i responses to 1 μM ACh, 10 μM histamine, and 10 nM bradykinin, as well as SOCE, were attenuated (each to a different extent) after disruption of caveolae by the cholesterol-chelating drug methyl-β-cyclodextrin. Transfection of ASM cells with 50 nM caveolin-1 small interfering RNA significantly weakened caveolin-1 expression and blunted [Ca2+]i responses to bradykinin and histamine, as well as SOCE, but the response to ACh was less intense. These results indicate that caveolae are present in ASM and that caveolin-1 contributes to regulation of [Ca2+]i responses to agonist.
Original language | English (US) |
---|---|
Pages (from-to) | L1118-L1126 |
Journal | American Journal of Physiology - Lung Cellular and Molecular Physiology |
Volume | 293 |
Issue number | 5 |
DOIs | |
State | Published - Nov 2007 |
Keywords
- Intracellular signaling pathway
- Methyl-β-cyclodextrin
- RNA
- Small interfering
- Store-operated calcium entry
ASJC Scopus subject areas
- Physiology
- Pulmonary and Respiratory Medicine
- Physiology (medical)
- Cell Biology