TY - JOUR
T1 - Caspase-3-derived C-terminal product of synphilin-1 displays antiapoptotic function via modulation of the p53-dependent cell death pathway
AU - Giaime, Emilie
AU - Sunyach, Claire
AU - Herrant, Magali
AU - Grosso, Sébastien
AU - Auberge, Patrick
AU - McLean, Pamela J.
AU - Checler, Frédéric
AU - Alves Da Costa, Cristine
PY - 2006/4/28
Y1 - 2006/4/28
N2 - Parkinson disease is the second most frequent neurodegenerative disorder after Alzheimer disease. A subset of genetic forms of Parkinson disease has been attributed to α-synuclein, a synaptic protein with remarkable chaperone properties. Synphilin-1 is a cytoplasmic protein that has been identified as a partner of α-synuclein (Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., Margolis, R. L., Troncoso, J. C., Lanahan, A. A., Worley, P. F., Dawson, V. L., Dawson, T. M., and Ross, C. A. (1999) Nat. Gen. 22, 110-114), but its function remains totally unknown. We show here for the first time that synphilin-1 displays an anti-apoptotic function in the control of cell death. We have established transient and stable transfectants overexpressing wild-type synphilin-1 in human embryonic kidney 293 cells, telecephalon-specific murine 1 neurons, and SH-SY5Y neuroblastoma cells, and we show that both cell systems display lower responsiveness to staurosporine and 6-hydroxydopamine. Thus, synphilin-1 reduces procaspase-3 hydrolysis and thereby caspase-3 activity and decreases poly(ADP-ribose) polymerase cleavage, two main indicators of apoptotic cell death. Furthermore, we establish that synphilin-1 drastically reduces p53 transcriptional activity and expression and lowers p53 promoter transactivation and mRNA levels. Interestingly, we demonstrate that synphilin-1 catabolism is enhanced by staurosporine and blocked by caspase-3 inhibitors. Accordingly, we show by transcription/translation assay that recombinant caspase-3 and, to a lesser extent, caspase-6 but not caspase-7 hydrolyze synphilin-1. Furthermore, we demonstrate that mutated synphilin-1, in which a consensus caspase-3 target sequence has been disrupted, resists proteolysis by cellular and recombinant caspases and displays drastically reduced antiapoptotic phenotype. We further show that the caspase-3-derived C-terminal fragment of synphilin-1 was probably responsible for the antiapoptotic phenotype elicited by the parent wild-type protein. Altogether, our study is the first demonstration that synphilin-1 harbors a protective function that is controlled by the C-terminal fragment generated by its proteolysis by caspase-3.
AB - Parkinson disease is the second most frequent neurodegenerative disorder after Alzheimer disease. A subset of genetic forms of Parkinson disease has been attributed to α-synuclein, a synaptic protein with remarkable chaperone properties. Synphilin-1 is a cytoplasmic protein that has been identified as a partner of α-synuclein (Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., Margolis, R. L., Troncoso, J. C., Lanahan, A. A., Worley, P. F., Dawson, V. L., Dawson, T. M., and Ross, C. A. (1999) Nat. Gen. 22, 110-114), but its function remains totally unknown. We show here for the first time that synphilin-1 displays an anti-apoptotic function in the control of cell death. We have established transient and stable transfectants overexpressing wild-type synphilin-1 in human embryonic kidney 293 cells, telecephalon-specific murine 1 neurons, and SH-SY5Y neuroblastoma cells, and we show that both cell systems display lower responsiveness to staurosporine and 6-hydroxydopamine. Thus, synphilin-1 reduces procaspase-3 hydrolysis and thereby caspase-3 activity and decreases poly(ADP-ribose) polymerase cleavage, two main indicators of apoptotic cell death. Furthermore, we establish that synphilin-1 drastically reduces p53 transcriptional activity and expression and lowers p53 promoter transactivation and mRNA levels. Interestingly, we demonstrate that synphilin-1 catabolism is enhanced by staurosporine and blocked by caspase-3 inhibitors. Accordingly, we show by transcription/translation assay that recombinant caspase-3 and, to a lesser extent, caspase-6 but not caspase-7 hydrolyze synphilin-1. Furthermore, we demonstrate that mutated synphilin-1, in which a consensus caspase-3 target sequence has been disrupted, resists proteolysis by cellular and recombinant caspases and displays drastically reduced antiapoptotic phenotype. We further show that the caspase-3-derived C-terminal fragment of synphilin-1 was probably responsible for the antiapoptotic phenotype elicited by the parent wild-type protein. Altogether, our study is the first demonstration that synphilin-1 harbors a protective function that is controlled by the C-terminal fragment generated by its proteolysis by caspase-3.
UR - http://www.scopus.com/inward/record.url?scp=33744963539&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33744963539&partnerID=8YFLogxK
U2 - 10.1074/jbc.M508619200
DO - 10.1074/jbc.M508619200
M3 - Article
C2 - 16495229
AN - SCOPUS:33744963539
SN - 0021-9258
VL - 281
SP - 11515
EP - 11522
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 17
ER -