Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload

Jeetendra B. Patel, Maria L. Valencik, Allison M. Pritchett, John C. Burnett, John A. McDonald, Margaret M. Redfield

Research output: Contribution to journalArticle

50 Scopus citations

Abstract

Atrial (ANP) and brain (BNP) natriuretic peptides are hormones of myocardial cell origin. These hormones bind to the natriuretic peptide A receptor (NPRA) throughout the body, stimulating cGMP production and playing a key role in blood pressure control. Because NPRA receptors are present on cardiomyocytes, we hypothesized that natriuretic peptides may have direct autocrine or paracrine effects on cardiomyocytes or adjacent cardiac cells. Because both natriuretic peptides and NPRA gene expression are upregulated in states of pressure overload, we speculated that the effects of the natriuretic peptides on cardiac structure and function would be most apparent after pressure overload. To attenuate cardiomyocyte NPRA activity, transgenic mice with cardiac specific expression of a dominant-negative (DN-NPRA) mutation (HCAT D 893A) in the NPRA receptor were created. Cardiac structure and function were assessed (avertin anesthesia) in the absence and presence of pressure overload produced by suprarenal aortic banding. In the absence of pressure overload, basal and BNP-stimulated guanylyl cyclase activity assessed in cardiac membrane fractions was reduced. However, systolic blood pressure, myocardial cGMP, log plasma ANP levels, and ventricular structure and function were similar in wild-type (WT-NPRA) and DN-NPRA mice. In the presence of pressure overload, myocardial cGMP levels were reduced, and ventricular hypertrophy, fibrosis, filling pressures, and mortality were increased in DN-NPRA compared with WT-NPRA mice. In addition to their hormonal effects, endogenous natriuretic peptides exert physiologically relevant autocrine and paracrine effects via cardiomyocyte NPRA receptors to modulate cardiac hypertrophy and fibrosis in response to pressure overload.

Original languageEnglish (US)
Pages (from-to)H777-H784
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume289
Issue number2 58-2
DOIs
StatePublished - Aug 1 2005

Keywords

  • Diastole
  • Fibrosis
  • Hypertrophy
  • Natriuretic peptides

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload'. Together they form a unique fingerprint.

  • Cite this