Cannabinoid receptor 1 gene and irritable bowel syndrome: Phenotype and quantitative traits

Michael Camilleri, Gururaj J. Kolar, Maria I Vazquez Roque, Paula Carlson, Duane D. Burton, Alan R. Zinsmeister

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Genetic variations in metabolism of endocannabinoids and in CNR1 (gene for cannabinoid 1 receptor) are associated with symptom phenotype, colonic transit, and left colon motility in irritable bowel syndrome (IBS). Our aim was to evaluate associations between two variations in CNR1 genotype (rs806378 and [AAT]n triplets) with symptom phenotype, small bowel and colonic transit, and rectal sensations in 455 patients with IBS and 228 healthy controls. Small bowel and colonic transit were measured by scintigraphy, rectal sensation by isobaric distensions. Associations with genotype were assessed by χ2 test (symptom phenotype) and ANCOVA (quantitative traits) based on a dominant genetic model. Significant association of CNR1 rs806378 (but not CNR1 [AAT]n) genotype and symptom phenotype was observed (χ2 P = 0.028). There was significant association of CNR1 rs806378 (P = 0.014; CC vs. CT/TT) with colonic transit in IBS-diarrhea (IBS-D) group; the TT group had the fastest colonic transit at 24 and 48 h. There was significant overall association of CNR1 rs806378 with sensation rating of gas (P = 0.025), but not pain; the strongest associations for gas ratings were in IBS-D (P = 0.002) and IBS-alternating (P = 0.025) subgroups. For CNR1 (AAT)n, gene-by-phenotype interactions were observed for colonic transit at 24 (P = 0.06) and 48 h (P = 0.002) and gas (P = 0.046, highest for IBS-D, P = 0.034), but not pain sensation; the strongest association with transit was in controls, not in IBS. These data support the hypothesis that cannabinoid receptors may play a role in control of colonic transit and sensation in humans and deserve further study as potential mediators or therapeutic targets in lower functional gastrointestinal disorders.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume304
Issue number5
DOIs
StatePublished - 2013

Fingerprint

Cannabinoid Receptors
Irritable Bowel Syndrome
Phenotype
Genes
Gases
Genotype
Pain
Endocannabinoids
Gastrointestinal Diseases
Genetic Models
Radionuclide Imaging
Diarrhea
Colon

Keywords

  • Colon
  • Genetics
  • Sensation
  • Transit
  • Variation

ASJC Scopus subject areas

  • Gastroenterology
  • Physiology (medical)
  • Physiology
  • Hepatology

Cite this

Cannabinoid receptor 1 gene and irritable bowel syndrome : Phenotype and quantitative traits. / Camilleri, Michael; Kolar, Gururaj J.; Vazquez Roque, Maria I; Carlson, Paula; Burton, Duane D.; Zinsmeister, Alan R.

In: American Journal of Physiology - Gastrointestinal and Liver Physiology, Vol. 304, No. 5, 2013.

Research output: Contribution to journalArticle

@article{22967fd88c334840aea9a3b12323bc8f,
title = "Cannabinoid receptor 1 gene and irritable bowel syndrome: Phenotype and quantitative traits",
abstract = "Genetic variations in metabolism of endocannabinoids and in CNR1 (gene for cannabinoid 1 receptor) are associated with symptom phenotype, colonic transit, and left colon motility in irritable bowel syndrome (IBS). Our aim was to evaluate associations between two variations in CNR1 genotype (rs806378 and [AAT]n triplets) with symptom phenotype, small bowel and colonic transit, and rectal sensations in 455 patients with IBS and 228 healthy controls. Small bowel and colonic transit were measured by scintigraphy, rectal sensation by isobaric distensions. Associations with genotype were assessed by χ2 test (symptom phenotype) and ANCOVA (quantitative traits) based on a dominant genetic model. Significant association of CNR1 rs806378 (but not CNR1 [AAT]n) genotype and symptom phenotype was observed (χ2 P = 0.028). There was significant association of CNR1 rs806378 (P = 0.014; CC vs. CT/TT) with colonic transit in IBS-diarrhea (IBS-D) group; the TT group had the fastest colonic transit at 24 and 48 h. There was significant overall association of CNR1 rs806378 with sensation rating of gas (P = 0.025), but not pain; the strongest associations for gas ratings were in IBS-D (P = 0.002) and IBS-alternating (P = 0.025) subgroups. For CNR1 (AAT)n, gene-by-phenotype interactions were observed for colonic transit at 24 (P = 0.06) and 48 h (P = 0.002) and gas (P = 0.046, highest for IBS-D, P = 0.034), but not pain sensation; the strongest association with transit was in controls, not in IBS. These data support the hypothesis that cannabinoid receptors may play a role in control of colonic transit and sensation in humans and deserve further study as potential mediators or therapeutic targets in lower functional gastrointestinal disorders.",
keywords = "Colon, Genetics, Sensation, Transit, Variation",
author = "Michael Camilleri and Kolar, {Gururaj J.} and {Vazquez Roque}, {Maria I} and Paula Carlson and Burton, {Duane D.} and Zinsmeister, {Alan R.}",
year = "2013",
doi = "10.1152/ajpgi.00376.2012",
language = "English (US)",
volume = "304",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Cannabinoid receptor 1 gene and irritable bowel syndrome

T2 - Phenotype and quantitative traits

AU - Camilleri, Michael

AU - Kolar, Gururaj J.

AU - Vazquez Roque, Maria I

AU - Carlson, Paula

AU - Burton, Duane D.

AU - Zinsmeister, Alan R.

PY - 2013

Y1 - 2013

N2 - Genetic variations in metabolism of endocannabinoids and in CNR1 (gene for cannabinoid 1 receptor) are associated with symptom phenotype, colonic transit, and left colon motility in irritable bowel syndrome (IBS). Our aim was to evaluate associations between two variations in CNR1 genotype (rs806378 and [AAT]n triplets) with symptom phenotype, small bowel and colonic transit, and rectal sensations in 455 patients with IBS and 228 healthy controls. Small bowel and colonic transit were measured by scintigraphy, rectal sensation by isobaric distensions. Associations with genotype were assessed by χ2 test (symptom phenotype) and ANCOVA (quantitative traits) based on a dominant genetic model. Significant association of CNR1 rs806378 (but not CNR1 [AAT]n) genotype and symptom phenotype was observed (χ2 P = 0.028). There was significant association of CNR1 rs806378 (P = 0.014; CC vs. CT/TT) with colonic transit in IBS-diarrhea (IBS-D) group; the TT group had the fastest colonic transit at 24 and 48 h. There was significant overall association of CNR1 rs806378 with sensation rating of gas (P = 0.025), but not pain; the strongest associations for gas ratings were in IBS-D (P = 0.002) and IBS-alternating (P = 0.025) subgroups. For CNR1 (AAT)n, gene-by-phenotype interactions were observed for colonic transit at 24 (P = 0.06) and 48 h (P = 0.002) and gas (P = 0.046, highest for IBS-D, P = 0.034), but not pain sensation; the strongest association with transit was in controls, not in IBS. These data support the hypothesis that cannabinoid receptors may play a role in control of colonic transit and sensation in humans and deserve further study as potential mediators or therapeutic targets in lower functional gastrointestinal disorders.

AB - Genetic variations in metabolism of endocannabinoids and in CNR1 (gene for cannabinoid 1 receptor) are associated with symptom phenotype, colonic transit, and left colon motility in irritable bowel syndrome (IBS). Our aim was to evaluate associations between two variations in CNR1 genotype (rs806378 and [AAT]n triplets) with symptom phenotype, small bowel and colonic transit, and rectal sensations in 455 patients with IBS and 228 healthy controls. Small bowel and colonic transit were measured by scintigraphy, rectal sensation by isobaric distensions. Associations with genotype were assessed by χ2 test (symptom phenotype) and ANCOVA (quantitative traits) based on a dominant genetic model. Significant association of CNR1 rs806378 (but not CNR1 [AAT]n) genotype and symptom phenotype was observed (χ2 P = 0.028). There was significant association of CNR1 rs806378 (P = 0.014; CC vs. CT/TT) with colonic transit in IBS-diarrhea (IBS-D) group; the TT group had the fastest colonic transit at 24 and 48 h. There was significant overall association of CNR1 rs806378 with sensation rating of gas (P = 0.025), but not pain; the strongest associations for gas ratings were in IBS-D (P = 0.002) and IBS-alternating (P = 0.025) subgroups. For CNR1 (AAT)n, gene-by-phenotype interactions were observed for colonic transit at 24 (P = 0.06) and 48 h (P = 0.002) and gas (P = 0.046, highest for IBS-D, P = 0.034), but not pain sensation; the strongest association with transit was in controls, not in IBS. These data support the hypothesis that cannabinoid receptors may play a role in control of colonic transit and sensation in humans and deserve further study as potential mediators or therapeutic targets in lower functional gastrointestinal disorders.

KW - Colon

KW - Genetics

KW - Sensation

KW - Transit

KW - Variation

UR - http://www.scopus.com/inward/record.url?scp=84874627121&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874627121&partnerID=8YFLogxK

U2 - 10.1152/ajpgi.00376.2012

DO - 10.1152/ajpgi.00376.2012

M3 - Article

C2 - 23306084

AN - SCOPUS:84874627121

VL - 304

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 5

ER -