Calsenilin reverses presenilin-mediated enhancement of calcium signaling

Malcolm A. Leissring, Tritia R. Yamasaki, Wilma Wasco, Joseph D. Buxbaum, Ian Parker, Frank M. LaFerla

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

Most cases of autosomal-dominant familial Alzheimer's disease are linked to mutations in the presenilin genes (PS1 and PS2). In addition to modulating β-amyloid production, presenilin mutations also produce highly specific and selective alterations in intracellular calcium signaling. Although the molecular mechanisms underlying these changes are not known, one candidate molecular mediator is calsenilin, a recently identified calcium-binding protein that associates with the C terminus of both PS1 and PS2. In this study, we investigated the effects of calsenilin on calcium signaling in Xenopus oocytes expressing either wild-type or mutant PS1. In this system, mutant PS1 potentiated the amplitude of calcium signals evoked by inositol 1,4,5-trisphosphate and also accelerated their rates of decay. We report that calsenilin coexpression reverses both of these potentially pathogenic effects. Notably, expression of calsenilin alone had no discernable effects on calcium signaling, suggesting that calsenilin modulates these signals by a mechanism independent of simple calcium buffering. Our findings further suggest that the effects of presenilin mutations on calcium signaling are likely mediated through the C-terminal domain, a region that has also been implicated in the modulation of β-amyloid production and cell death.

Original languageEnglish (US)
Pages (from-to)8590-8593
Number of pages4
JournalProceedings of the National Academy of Sciences of the United States of America
Volume97
Issue number15
DOIs
StatePublished - Jul 18 2000

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Calsenilin reverses presenilin-mediated enhancement of calcium signaling'. Together they form a unique fingerprint.

Cite this