Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling

Ikuo Nakamura, Kais Zakharia, Bubu A. Banini, Dalia S. Mikhail, Tae Hyo Kim, Ju Dong Yang, Catherine D. Moser, Hassan M. Shaleh, Sarah R. Thornburgh, Ian Walters, Lewis R. Roberts

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


Background and Aims: Brivanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR) tyrosine kinases, which are both involved in mechanisms of liver fibrosis. We hypothesized that inhibition of VEGFR and FGFR by brivanib would inhibit liver fibrosis. We therefore examined the effect of brivanib on liver fibrosis in three mouse models of fibrosis. Methods: In vivo, we induced liver fibrosis by bile duct ligation (BDL), chronic carbon tetrachloride (CCl 4), and chronic thioacetamide (TAA) administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs) to assess the effect of brivanib on stellate cell proliferation and activation. Results: After in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF), VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor. Conclusion: Brivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer.

Original languageEnglish (US)
Article numbere92273
JournalPloS one
Issue number4
StatePublished - Apr 7 2014

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling'. Together they form a unique fingerprint.

Cite this