Biomarkers and surrogate end points-The challenge of statistical validation

Marc Buyse, Daniel J. Sargent, Axel F Grothey, Alastair Matheson, Aimery De Gramont

Research output: Contribution to journalArticle

194 Citations (Scopus)

Abstract

Biomarkers and surrogate end points have great potential for use in clinical oncology, but their statistical validation presents major challenges, and few biomarkers have been robustly confirmed. Provisional supportive data for prognostic biomarkers, which predict the likely outcome independently of treatment, is possible through small retrospective studies, but it has proved more difficult to achieve robust multi-site validation. Predictive biomarkers, which predict the likely response of patients to specific treatments, require more extensive data for validation, specifically large randomized clinical trials and meta-analysis. Surrogate end points are even more challenging to validate, and require data demonstrating both that the surrogate is prognostic for the true end point independently of treatment, and that the effect of treatment on the surrogate reliably predicts its effect on the true end point. In this Review, we discuss the nature of prognostic and predictive biomarkers and surrogate end points, and examine the statistical techniques and designs required for their validation. In cases where the statistical requirements for validation cannot be rigorously achieved, the biological plausibility of an end point or surrogate might support its adoption. No consensus yet exists on processes or standards for pragmatic evaluation and adoption of biomarkers and surrogate end points in the absence of robust statistical validation.

Original languageEnglish (US)
Pages (from-to)309-317
Number of pages9
JournalNature Reviews Clinical Oncology
Volume7
Issue number6
DOIs
StatePublished - Jun 2010

Fingerprint

Biomarkers
Medical Oncology
Meta-Analysis
Therapeutics
Randomized Controlled Trials
Retrospective Studies

ASJC Scopus subject areas

  • Oncology
  • Medicine(all)

Cite this

Buyse, M., Sargent, D. J., Grothey, A. F., Matheson, A., & De Gramont, A. (2010). Biomarkers and surrogate end points-The challenge of statistical validation. Nature Reviews Clinical Oncology, 7(6), 309-317. https://doi.org/10.1038/nrclinonc.2010.43

Biomarkers and surrogate end points-The challenge of statistical validation. / Buyse, Marc; Sargent, Daniel J.; Grothey, Axel F; Matheson, Alastair; De Gramont, Aimery.

In: Nature Reviews Clinical Oncology, Vol. 7, No. 6, 06.2010, p. 309-317.

Research output: Contribution to journalArticle

Buyse, M, Sargent, DJ, Grothey, AF, Matheson, A & De Gramont, A 2010, 'Biomarkers and surrogate end points-The challenge of statistical validation', Nature Reviews Clinical Oncology, vol. 7, no. 6, pp. 309-317. https://doi.org/10.1038/nrclinonc.2010.43
Buyse, Marc ; Sargent, Daniel J. ; Grothey, Axel F ; Matheson, Alastair ; De Gramont, Aimery. / Biomarkers and surrogate end points-The challenge of statistical validation. In: Nature Reviews Clinical Oncology. 2010 ; Vol. 7, No. 6. pp. 309-317.
@article{7b246feff9db4dac9b970b36b84630c9,
title = "Biomarkers and surrogate end points-The challenge of statistical validation",
abstract = "Biomarkers and surrogate end points have great potential for use in clinical oncology, but their statistical validation presents major challenges, and few biomarkers have been robustly confirmed. Provisional supportive data for prognostic biomarkers, which predict the likely outcome independently of treatment, is possible through small retrospective studies, but it has proved more difficult to achieve robust multi-site validation. Predictive biomarkers, which predict the likely response of patients to specific treatments, require more extensive data for validation, specifically large randomized clinical trials and meta-analysis. Surrogate end points are even more challenging to validate, and require data demonstrating both that the surrogate is prognostic for the true end point independently of treatment, and that the effect of treatment on the surrogate reliably predicts its effect on the true end point. In this Review, we discuss the nature of prognostic and predictive biomarkers and surrogate end points, and examine the statistical techniques and designs required for their validation. In cases where the statistical requirements for validation cannot be rigorously achieved, the biological plausibility of an end point or surrogate might support its adoption. No consensus yet exists on processes or standards for pragmatic evaluation and adoption of biomarkers and surrogate end points in the absence of robust statistical validation.",
author = "Marc Buyse and Sargent, {Daniel J.} and Grothey, {Axel F} and Alastair Matheson and {De Gramont}, Aimery",
year = "2010",
month = "6",
doi = "10.1038/nrclinonc.2010.43",
language = "English (US)",
volume = "7",
pages = "309--317",
journal = "Nature Reviews Clinical Oncology",
issn = "1759-4774",
publisher = "Nature Publishing Group",
number = "6",

}

TY - JOUR

T1 - Biomarkers and surrogate end points-The challenge of statistical validation

AU - Buyse, Marc

AU - Sargent, Daniel J.

AU - Grothey, Axel F

AU - Matheson, Alastair

AU - De Gramont, Aimery

PY - 2010/6

Y1 - 2010/6

N2 - Biomarkers and surrogate end points have great potential for use in clinical oncology, but their statistical validation presents major challenges, and few biomarkers have been robustly confirmed. Provisional supportive data for prognostic biomarkers, which predict the likely outcome independently of treatment, is possible through small retrospective studies, but it has proved more difficult to achieve robust multi-site validation. Predictive biomarkers, which predict the likely response of patients to specific treatments, require more extensive data for validation, specifically large randomized clinical trials and meta-analysis. Surrogate end points are even more challenging to validate, and require data demonstrating both that the surrogate is prognostic for the true end point independently of treatment, and that the effect of treatment on the surrogate reliably predicts its effect on the true end point. In this Review, we discuss the nature of prognostic and predictive biomarkers and surrogate end points, and examine the statistical techniques and designs required for their validation. In cases where the statistical requirements for validation cannot be rigorously achieved, the biological plausibility of an end point or surrogate might support its adoption. No consensus yet exists on processes or standards for pragmatic evaluation and adoption of biomarkers and surrogate end points in the absence of robust statistical validation.

AB - Biomarkers and surrogate end points have great potential for use in clinical oncology, but their statistical validation presents major challenges, and few biomarkers have been robustly confirmed. Provisional supportive data for prognostic biomarkers, which predict the likely outcome independently of treatment, is possible through small retrospective studies, but it has proved more difficult to achieve robust multi-site validation. Predictive biomarkers, which predict the likely response of patients to specific treatments, require more extensive data for validation, specifically large randomized clinical trials and meta-analysis. Surrogate end points are even more challenging to validate, and require data demonstrating both that the surrogate is prognostic for the true end point independently of treatment, and that the effect of treatment on the surrogate reliably predicts its effect on the true end point. In this Review, we discuss the nature of prognostic and predictive biomarkers and surrogate end points, and examine the statistical techniques and designs required for their validation. In cases where the statistical requirements for validation cannot be rigorously achieved, the biological plausibility of an end point or surrogate might support its adoption. No consensus yet exists on processes or standards for pragmatic evaluation and adoption of biomarkers and surrogate end points in the absence of robust statistical validation.

UR - http://www.scopus.com/inward/record.url?scp=77953127347&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77953127347&partnerID=8YFLogxK

U2 - 10.1038/nrclinonc.2010.43

DO - 10.1038/nrclinonc.2010.43

M3 - Article

VL - 7

SP - 309

EP - 317

JO - Nature Reviews Clinical Oncology

JF - Nature Reviews Clinical Oncology

SN - 1759-4774

IS - 6

ER -