Axon terminals containing tyrosine hydroxylase- and dopamine-β-hydroxylase immunoreactivity form synapses with galanin immunoreactive neurons in the lateral division of the bed nucleus of the stria terminalis in the rat

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Catecholaminergic projections from brainstem sources to the bed nucleus of the stria terminalis play a central role in the neurochemically mediated modulation/regulation of stress response. The lateral division of the bed nucleus of the stria terminalis (BSTL) exhibits several galanin immunoreactive (ir) neurons that are also central in the modulatory control of acute stress responses. The distribution of galaninergic nervous structures overlaps with that of the dopaminergic and noradrenergic axon terminals in the BSTL. Since both monoamines and galanin regulate/modulate the central regulatory pathways of endocrine, behavioral and physiological responses during stress, the aim of this study was to demonstrate synaptic interaction between galanin-ir nervous structures and fiber terminals immunopositive for dopamine or noradrenaline in the BSTL, thereby providing morphological data to understand better the significance of catecholamine-galanin interactions in brain areas responding to stressful stimuli. Double-labeling immunohistochemistry applied both at light and electron microscopic levels made it possible to demonstrate synaptic interactions between galanin-ir nervous structures and axon terminals immunopositive for either dopamine or noradrenaline. The dopaminergic fiber terminals innervated galanin-ir cells and dendrites in the laterodorsal division of the bed nucleus of the stria terminalis (BST), whereas the noradrenergic axons contacted galaninergic neurons and dendrites in the lateroventral BST. In this study, interactions between monoamines and galanin-ir structures were demonstrated in the BSTL which can be central in the modulatory control of the major stress regulatory pathway of the limbic-hypothalamo-pituitary-adrenal axis.

Original languageEnglish (US)
Pages (from-to)23-33
Number of pages11
JournalBrain Research
Volume914
Issue number1-2
DOIs
StatePublished - Sep 28 2001
Externally publishedYes

Fingerprint

Galanin
Septal Nuclei
Presynaptic Terminals
Tyrosine 3-Monooxygenase
Mixed Function Oxygenases
Synapses
Dopamine
Neurons
Dendrites
Norepinephrine
Physiological Stress
Brain Stem
Catecholamines
Axons
Immunohistochemistry
Electrons
Light
Brain

Keywords

  • Adrenergic
  • Axodendritic synapses
  • Axosomatic synapses
  • Immunohistochemistry
  • Stress

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{caa70d55ee734249b2bb5d694150c662,
title = "Axon terminals containing tyrosine hydroxylase- and dopamine-β-hydroxylase immunoreactivity form synapses with galanin immunoreactive neurons in the lateral division of the bed nucleus of the stria terminalis in the rat",
abstract = "Catecholaminergic projections from brainstem sources to the bed nucleus of the stria terminalis play a central role in the neurochemically mediated modulation/regulation of stress response. The lateral division of the bed nucleus of the stria terminalis (BSTL) exhibits several galanin immunoreactive (ir) neurons that are also central in the modulatory control of acute stress responses. The distribution of galaninergic nervous structures overlaps with that of the dopaminergic and noradrenergic axon terminals in the BSTL. Since both monoamines and galanin regulate/modulate the central regulatory pathways of endocrine, behavioral and physiological responses during stress, the aim of this study was to demonstrate synaptic interaction between galanin-ir nervous structures and fiber terminals immunopositive for dopamine or noradrenaline in the BSTL, thereby providing morphological data to understand better the significance of catecholamine-galanin interactions in brain areas responding to stressful stimuli. Double-labeling immunohistochemistry applied both at light and electron microscopic levels made it possible to demonstrate synaptic interactions between galanin-ir nervous structures and axon terminals immunopositive for either dopamine or noradrenaline. The dopaminergic fiber terminals innervated galanin-ir cells and dendrites in the laterodorsal division of the bed nucleus of the stria terminalis (BST), whereas the noradrenergic axons contacted galaninergic neurons and dendrites in the lateroventral BST. In this study, interactions between monoamines and galanin-ir structures were demonstrated in the BSTL which can be central in the modulatory control of the major stress regulatory pathway of the limbic-hypothalamo-pituitary-adrenal axis.",
keywords = "Adrenergic, Axodendritic synapses, Axosomatic synapses, Immunohistochemistry, Stress",
author = "Tamas Kozicz",
year = "2001",
month = "9",
day = "28",
doi = "10.1016/S0006-8993(01)02770-6",
language = "English (US)",
volume = "914",
pages = "23--33",
journal = "Brain Research",
issn = "0006-8993",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Axon terminals containing tyrosine hydroxylase- and dopamine-β-hydroxylase immunoreactivity form synapses with galanin immunoreactive neurons in the lateral division of the bed nucleus of the stria terminalis in the rat

AU - Kozicz, Tamas

PY - 2001/9/28

Y1 - 2001/9/28

N2 - Catecholaminergic projections from brainstem sources to the bed nucleus of the stria terminalis play a central role in the neurochemically mediated modulation/regulation of stress response. The lateral division of the bed nucleus of the stria terminalis (BSTL) exhibits several galanin immunoreactive (ir) neurons that are also central in the modulatory control of acute stress responses. The distribution of galaninergic nervous structures overlaps with that of the dopaminergic and noradrenergic axon terminals in the BSTL. Since both monoamines and galanin regulate/modulate the central regulatory pathways of endocrine, behavioral and physiological responses during stress, the aim of this study was to demonstrate synaptic interaction between galanin-ir nervous structures and fiber terminals immunopositive for dopamine or noradrenaline in the BSTL, thereby providing morphological data to understand better the significance of catecholamine-galanin interactions in brain areas responding to stressful stimuli. Double-labeling immunohistochemistry applied both at light and electron microscopic levels made it possible to demonstrate synaptic interactions between galanin-ir nervous structures and axon terminals immunopositive for either dopamine or noradrenaline. The dopaminergic fiber terminals innervated galanin-ir cells and dendrites in the laterodorsal division of the bed nucleus of the stria terminalis (BST), whereas the noradrenergic axons contacted galaninergic neurons and dendrites in the lateroventral BST. In this study, interactions between monoamines and galanin-ir structures were demonstrated in the BSTL which can be central in the modulatory control of the major stress regulatory pathway of the limbic-hypothalamo-pituitary-adrenal axis.

AB - Catecholaminergic projections from brainstem sources to the bed nucleus of the stria terminalis play a central role in the neurochemically mediated modulation/regulation of stress response. The lateral division of the bed nucleus of the stria terminalis (BSTL) exhibits several galanin immunoreactive (ir) neurons that are also central in the modulatory control of acute stress responses. The distribution of galaninergic nervous structures overlaps with that of the dopaminergic and noradrenergic axon terminals in the BSTL. Since both monoamines and galanin regulate/modulate the central regulatory pathways of endocrine, behavioral and physiological responses during stress, the aim of this study was to demonstrate synaptic interaction between galanin-ir nervous structures and fiber terminals immunopositive for dopamine or noradrenaline in the BSTL, thereby providing morphological data to understand better the significance of catecholamine-galanin interactions in brain areas responding to stressful stimuli. Double-labeling immunohistochemistry applied both at light and electron microscopic levels made it possible to demonstrate synaptic interactions between galanin-ir nervous structures and axon terminals immunopositive for either dopamine or noradrenaline. The dopaminergic fiber terminals innervated galanin-ir cells and dendrites in the laterodorsal division of the bed nucleus of the stria terminalis (BST), whereas the noradrenergic axons contacted galaninergic neurons and dendrites in the lateroventral BST. In this study, interactions between monoamines and galanin-ir structures were demonstrated in the BSTL which can be central in the modulatory control of the major stress regulatory pathway of the limbic-hypothalamo-pituitary-adrenal axis.

KW - Adrenergic

KW - Axodendritic synapses

KW - Axosomatic synapses

KW - Immunohistochemistry

KW - Stress

UR - http://www.scopus.com/inward/record.url?scp=0035964781&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035964781&partnerID=8YFLogxK

U2 - 10.1016/S0006-8993(01)02770-6

DO - 10.1016/S0006-8993(01)02770-6

M3 - Article

C2 - 11578594

AN - SCOPUS:0035964781

VL - 914

SP - 23

EP - 33

JO - Brain Research

JF - Brain Research

SN - 0006-8993

IS - 1-2

ER -