Association between ALS and retroviruses: Evidence from bioinformatics analysis

Jon P. Klein, Zhifu Sun, Nathan P. Staff

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Background: Emerging evidence suggests retroviruses play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Specifically, activation of ancient viral genes embedded in the human genome is theorized to lead to motor neuron degeneration. We explore whether connections exist between ALS and retroviruses through protein interaction networks (PIN) and pathway analysis, and consider the potential roles in drug target discovery. Protein database and pathway/network analytical software including Ingenuity Pathway BioProfiler, STRING, and CytoScape were utilized to identify overlapping protein interaction networks and extract core cluster (s) of retroviruses and ALS. Results: Topological and statistical analysis of the ALS-PIN and retrovirus-PIN identified a shared, essential protein network and a core cluster with significant connections with both networks. The identified core cluster has three interleukin molecules IL10, Il-6 and IL-1B, a central apoptosis regulator TP53, and several major transcription regulators including MAPK1, ANXA5, SQSTM1, SREBF2, and FADD. Pathway enrichment analysis showed that this core cluster is associated with the glucocorticoid receptor singling and neuroinflammation signaling pathways. For confirmation purposes, we applied the same methodology to the West Nile and Polio virus, which demonstrated trivial connectivity with ALS, supporting the unique connection between ALS and retroviruses. Conclusions: Bioinformatics analysis provides evidence to support pathological links between ALS and retroviral activation. The neuroinflammation and apoptotic regulation pathways are specifically implicated. The continuation and further analysis of large scale genome studies may prove useful in exploring genes important in retroviral activation and ALS, which may help discover new drug targets.

Original languageEnglish (US)
Article number680
JournalBMC bioinformatics
Volume20
DOIs
StatePublished - Dec 20 2019

Keywords

  • Amyotrophic lateral sclerosis
  • Bioinformatics
  • HIV
  • Motor neuron disease
  • Neurodegeneration
  • Pathway analysis
  • Retrovirus

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Association between ALS and retroviruses: Evidence from bioinformatics analysis'. Together they form a unique fingerprint.

Cite this