TY - JOUR
T1 - Artificial Intelligence–Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device
AU - Giudicessi, John R.
AU - Schram, Matthew
AU - Bos, J. Martijn
AU - Galloway, Conner D.
AU - Shreibati, Jacqueline B.
AU - Johnson, Patrick W.
AU - Carter, Rickey E.
AU - Disrud, Levi W.
AU - Kleiman, Robert
AU - Attia, Zachi I.
AU - Noseworthy, Peter A.
AU - Friedman, Paul A.
AU - Albert, David E.
AU - Ackerman, Michael J.
N1 - Funding Information:
This work was supported by the Windland Smith Rice Comprehensive Sudden Cardiac Death Program at Mayo Clinic (Rochester, MN).
Publisher Copyright:
© 2021 American Heart Association, Inc.
PY - 2021/3/30
Y1 - 2021/3/30
N2 - BACKGROUND: Heart rate–corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2–mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)–enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities. METHODS: Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the “gold standard”. The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L. RESULTS: In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (−1.76±23.14 ms). Similarly, within the prospective, genetic heart disease–enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (−0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN’s ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively. CONCLUSIONS: Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.
AB - BACKGROUND: Heart rate–corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2–mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)–enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities. METHODS: Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the “gold standard”. The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L. RESULTS: In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (−1.76±23.14 ms). Similarly, within the prospective, genetic heart disease–enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (−0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN’s ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively. CONCLUSIONS: Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.
KW - Artificial intelligence
KW - Electrocardiography
KW - Long QT syndrome
KW - Machine learning
UR - http://www.scopus.com/inward/record.url?scp=85103683924&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103683924&partnerID=8YFLogxK
U2 - 10.1161/CIRCULATIONAHA.120.050231
DO - 10.1161/CIRCULATIONAHA.120.050231
M3 - Article
C2 - 33517677
AN - SCOPUS:85103683924
SN - 0009-7322
VL - 143
SP - 1274
EP - 1286
JO - Circulation
JF - Circulation
IS - 13
ER -