Arithmetic for Ultra-High-Speed Tomography

Earl E. Swartzlander, Barry K. Gilbert

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

The first of a new generation of high performance X-ray computed tomographic (CT) machines, the Dynamic Spatial Reconstructor, imposes a requirement for digital signal processing rates which are 3–4 orders of magnitude greater than the capability of current X-ray computed tomography processors. To solve the large-scale computational problems for this and similar CT units which are currently under development, three candidate arithmetic implementations of ultra-high-speed convolutional filtering and weighted linear summation algorithms have been developed and compared. Since both convolution and weighted summation are performed via the inner product operation, which is the basis for most digital signal processing algorithms, the results are widely applicable. The three arithmetic approaches are a two's complement modular array, a merged arithmetic module, and a sign/logarithm convolver. A figure of merit, which relates processing speed to complexity, is used to compare the three arithmetic approaches. It is demonstrated that processing rates in the billions of multiply-add operations per second may be realized with special-purpose processors of moderate complexity.

Original languageEnglish (US)
Pages (from-to)341-353
Number of pages13
JournalIEEE Transactions on Computers
VolumeC-29
Issue number5
DOIs
StatePublished - May 1980

Keywords

  • Computed tomography
  • computer arithmetic
  • implementation figure of merit
  • merged arithmetic
  • sign/logarithm number system
  • special-purpose processors
  • two complement arithmetic

ASJC Scopus subject areas

  • Software
  • Theoretical Computer Science
  • Hardware and Architecture
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Arithmetic for Ultra-High-Speed Tomography'. Together they form a unique fingerprint.

  • Cite this