## Abstract

Based upon an algorithm described in a separate paper [1], multiple transmission lines with skin effect losses and dispersive characteristics were analyzed by the volume equivalent principle, and the scattering matrix [Sω] and characteristic impedance matrix [z_{0ω}] of the transmission lines were obtained. The [Sω] and [Z_{0}(w)] were then transformed by the inverse FFT into the time domain. The scattering matrix representation is multiplicative in nature, which leads to the time domain formulation as a set of convolution integrals. Instead of attempting to solve a set of coupled convolution integral equations by the multivariable Newton-Raphson method, which may occasionally be unstable, we generated a set of object functions and applied a multivariable optimization technique, referred to as the modified Levenberg-Marquardt algorithm, to attain the solutions. The new method, which is quite general, reduces to the special cases derived in many previous publications.

Original language | English (US) |
---|---|

Pages (from-to) | 531-535 |

Number of pages | 5 |

Journal | IEEE Transactions on Microwave Theory and Techniques |

Volume | 41 |

Issue number | 3 |

DOIs | |

State | Published - Mar 1993 |

## ASJC Scopus subject areas

- Radiation
- Condensed Matter Physics
- Electrical and Electronic Engineering