Alzheimer’s disease associated AKAP9 I2558M mutation alters posttranslational modification and interactome of tau and cellular functions in CRISPR-edited human neuronal cells

Yang You, Samuel W. Hersh, Roshanak Aslebagh, Scott A. Shaffer, Seiko Ikezu, Jesse Mez, Kathryn L. Lunetta, Mark W. Logue, Lindsay A. Farrer, Tsuneya Ikezu

Research output: Contribution to journalArticlepeer-review

Abstract

Alzheimer's disease (AD) is a pervasive neurodegeneration disease with high heritability. In this study, we employed CRISPR-Cas9-engineered technology to investigate the effects of a rare mutation (rs144662445) in the A kinase anchoring protein 9 (AKAP9) gene, which is associated with AD in African Americans (AA), on tau pathology and the tau interactome in SH-SY5Y P301L neuron-like cells. The mutation significantly increased the level of phosphorylated tau, specifically at the site Ser396/Ser404. Moreover, analyses of the tau interactome measured by affinity purification-mass spectrometry revealed that differentially expressed tau-interacting proteins in AKAP9 mutant cells were associated with RNA translation, RNA localization and oxidative activity, recapitulating the tau interactome signature previously reported with human AD brain samples. Importantly, these results were further validated by functional studies showing a significant reduction in protein synthesis activity and excessive oxidative stress in AKAP9 mutant compared with wild type cells in a tau-dependent manner, which are mirrored with pathological phenotype frequently seen in AD. Our results demonstrated specific effects of rs14462445 on mis-processing of tau and suggest a potential role of AKAP9 in AD pathogenesis.

Original languageEnglish (US)
Article numbere13617
JournalAging Cell
Volume21
Issue number6
DOIs
StatePublished - Jun 2022

Keywords

  • Alzheimer's disease
  • CRISPR
  • Tau
  • Tau interactome
  • a kinase anchoring protein 9
  • oxidative stress
  • phosphorylated tau
  • protein synthesis
  • proteomics

ASJC Scopus subject areas

  • Aging
  • Cell Biology

Fingerprint

Dive into the research topics of 'Alzheimer’s disease associated AKAP9 I2558M mutation alters posttranslational modification and interactome of tau and cellular functions in CRISPR-edited human neuronal cells'. Together they form a unique fingerprint.

Cite this