Alterations in insulin-like growth factor (IGF)-dependent IGF-binding protein-4 proteolysis in transformed osteoblastic cells

Susan K. Durham, B. Lawrence Riggs, Steven A. Harris, Cheryl A Conover

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Insulin-like growth factor (IGF)-binding protein-4 (IGFBP-4) is secreted by a variety of osteoblastic cells and appears to be an integral component of bone cell physiology. We have previously reported that normal human osteoblast-like (hOB) cells secrete IGFBP-4 as well as a novel IGFBP-4 protease, which requires IGF for functional activity. In this study we assessed the IGFBP-4/IGFBP-4 protease system in transformed osteoblastic cells by Western ligand blotting and cell-free IGFBP-4 protease assays. Simian virus-40-immortalized hOB cells (HOBIT), human osteosarcoma cells (TE-85), and rat osteosarcoma cells (UMR 106-01, ROS 17/2.8) secrete IGFBP-4. In contrast to the rapid and dramatic proteolysis in hOB medium, medium conditioned by these cells had no apparent IGFBP-4 protease activity when assayed with exogenous IGF-II in culture or under cell-free conditions. Assayed in the presence of exogenous protease. HOBIT cells, but not the osteosarcoma cell lines, appeared to produce a cycloheximide-sensitive inhibitor of the IGFBP-4 proteolytic reaction. Transient cell transformation induced by incubating human osteoblasts transfected with a temperature-sensitive mutant of simian virus-40 T-antigen at the permissive temperature or by treating hOB cells with phorbol ester tumor promoters also resulted in inhibition of IGF-dependent IGFBP-4 proteolysis. Inhibition was observed if phorbol ester was added to the cultures at the time of medium change or after the protease had been expressed and secreted. Differences in IGFBP-4 proteolysis could not be accounted for by changes in IGFBP-4 messenger RNA expression or substrate levels. These data suggest that transformation is associated with alterations in the IGFBP-4/IGFBP-4 protease system in osteoblastic cells. Normal human osteoblasts secrete an IGF-dependent IGFBP-4 protease. The induction of an inhibitor of the IGF-dependent IGFBP-4 proteolytic reaction may be associated with early transformation processes. Fully tumorigenic bone cells expressed neither IGFBP-4 protease nor protease inhibitor activity.

Original languageEnglish (US)
Pages (from-to)1340-1347
Number of pages8
JournalEndocrinology
Volume136
Issue number4
DOIs
StatePublished - 1995

Fingerprint

Insulin-Like Growth Factor Binding Protein 4
Somatomedins
Proteolysis
Peptide Hydrolases
Osteoblasts
Osteosarcoma
Simian virus 40
Phorbol Esters
Pregnancy-Associated Plasma Protein-A
Bone and Bones
Cell Physiological Phenomena
Temperature
Insulin-Like Growth Factor II

ASJC Scopus subject areas

  • Endocrinology

Cite this

Alterations in insulin-like growth factor (IGF)-dependent IGF-binding protein-4 proteolysis in transformed osteoblastic cells. / Durham, Susan K.; Riggs, B. Lawrence; Harris, Steven A.; Conover, Cheryl A.

In: Endocrinology, Vol. 136, No. 4, 1995, p. 1340-1347.

Research output: Contribution to journalArticle

Durham, Susan K. ; Riggs, B. Lawrence ; Harris, Steven A. ; Conover, Cheryl A. / Alterations in insulin-like growth factor (IGF)-dependent IGF-binding protein-4 proteolysis in transformed osteoblastic cells. In: Endocrinology. 1995 ; Vol. 136, No. 4. pp. 1340-1347.
@article{9696041c3d634973811fe2c05f7db9bb,
title = "Alterations in insulin-like growth factor (IGF)-dependent IGF-binding protein-4 proteolysis in transformed osteoblastic cells",
abstract = "Insulin-like growth factor (IGF)-binding protein-4 (IGFBP-4) is secreted by a variety of osteoblastic cells and appears to be an integral component of bone cell physiology. We have previously reported that normal human osteoblast-like (hOB) cells secrete IGFBP-4 as well as a novel IGFBP-4 protease, which requires IGF for functional activity. In this study we assessed the IGFBP-4/IGFBP-4 protease system in transformed osteoblastic cells by Western ligand blotting and cell-free IGFBP-4 protease assays. Simian virus-40-immortalized hOB cells (HOBIT), human osteosarcoma cells (TE-85), and rat osteosarcoma cells (UMR 106-01, ROS 17/2.8) secrete IGFBP-4. In contrast to the rapid and dramatic proteolysis in hOB medium, medium conditioned by these cells had no apparent IGFBP-4 protease activity when assayed with exogenous IGF-II in culture or under cell-free conditions. Assayed in the presence of exogenous protease. HOBIT cells, but not the osteosarcoma cell lines, appeared to produce a cycloheximide-sensitive inhibitor of the IGFBP-4 proteolytic reaction. Transient cell transformation induced by incubating human osteoblasts transfected with a temperature-sensitive mutant of simian virus-40 T-antigen at the permissive temperature or by treating hOB cells with phorbol ester tumor promoters also resulted in inhibition of IGF-dependent IGFBP-4 proteolysis. Inhibition was observed if phorbol ester was added to the cultures at the time of medium change or after the protease had been expressed and secreted. Differences in IGFBP-4 proteolysis could not be accounted for by changes in IGFBP-4 messenger RNA expression or substrate levels. These data suggest that transformation is associated with alterations in the IGFBP-4/IGFBP-4 protease system in osteoblastic cells. Normal human osteoblasts secrete an IGF-dependent IGFBP-4 protease. The induction of an inhibitor of the IGF-dependent IGFBP-4 proteolytic reaction may be associated with early transformation processes. Fully tumorigenic bone cells expressed neither IGFBP-4 protease nor protease inhibitor activity.",
author = "Durham, {Susan K.} and Riggs, {B. Lawrence} and Harris, {Steven A.} and Conover, {Cheryl A}",
year = "1995",
doi = "10.1210/endo.136.4.7534697",
language = "English (US)",
volume = "136",
pages = "1340--1347",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "The Endocrine Society",
number = "4",

}

TY - JOUR

T1 - Alterations in insulin-like growth factor (IGF)-dependent IGF-binding protein-4 proteolysis in transformed osteoblastic cells

AU - Durham, Susan K.

AU - Riggs, B. Lawrence

AU - Harris, Steven A.

AU - Conover, Cheryl A

PY - 1995

Y1 - 1995

N2 - Insulin-like growth factor (IGF)-binding protein-4 (IGFBP-4) is secreted by a variety of osteoblastic cells and appears to be an integral component of bone cell physiology. We have previously reported that normal human osteoblast-like (hOB) cells secrete IGFBP-4 as well as a novel IGFBP-4 protease, which requires IGF for functional activity. In this study we assessed the IGFBP-4/IGFBP-4 protease system in transformed osteoblastic cells by Western ligand blotting and cell-free IGFBP-4 protease assays. Simian virus-40-immortalized hOB cells (HOBIT), human osteosarcoma cells (TE-85), and rat osteosarcoma cells (UMR 106-01, ROS 17/2.8) secrete IGFBP-4. In contrast to the rapid and dramatic proteolysis in hOB medium, medium conditioned by these cells had no apparent IGFBP-4 protease activity when assayed with exogenous IGF-II in culture or under cell-free conditions. Assayed in the presence of exogenous protease. HOBIT cells, but not the osteosarcoma cell lines, appeared to produce a cycloheximide-sensitive inhibitor of the IGFBP-4 proteolytic reaction. Transient cell transformation induced by incubating human osteoblasts transfected with a temperature-sensitive mutant of simian virus-40 T-antigen at the permissive temperature or by treating hOB cells with phorbol ester tumor promoters also resulted in inhibition of IGF-dependent IGFBP-4 proteolysis. Inhibition was observed if phorbol ester was added to the cultures at the time of medium change or after the protease had been expressed and secreted. Differences in IGFBP-4 proteolysis could not be accounted for by changes in IGFBP-4 messenger RNA expression or substrate levels. These data suggest that transformation is associated with alterations in the IGFBP-4/IGFBP-4 protease system in osteoblastic cells. Normal human osteoblasts secrete an IGF-dependent IGFBP-4 protease. The induction of an inhibitor of the IGF-dependent IGFBP-4 proteolytic reaction may be associated with early transformation processes. Fully tumorigenic bone cells expressed neither IGFBP-4 protease nor protease inhibitor activity.

AB - Insulin-like growth factor (IGF)-binding protein-4 (IGFBP-4) is secreted by a variety of osteoblastic cells and appears to be an integral component of bone cell physiology. We have previously reported that normal human osteoblast-like (hOB) cells secrete IGFBP-4 as well as a novel IGFBP-4 protease, which requires IGF for functional activity. In this study we assessed the IGFBP-4/IGFBP-4 protease system in transformed osteoblastic cells by Western ligand blotting and cell-free IGFBP-4 protease assays. Simian virus-40-immortalized hOB cells (HOBIT), human osteosarcoma cells (TE-85), and rat osteosarcoma cells (UMR 106-01, ROS 17/2.8) secrete IGFBP-4. In contrast to the rapid and dramatic proteolysis in hOB medium, medium conditioned by these cells had no apparent IGFBP-4 protease activity when assayed with exogenous IGF-II in culture or under cell-free conditions. Assayed in the presence of exogenous protease. HOBIT cells, but not the osteosarcoma cell lines, appeared to produce a cycloheximide-sensitive inhibitor of the IGFBP-4 proteolytic reaction. Transient cell transformation induced by incubating human osteoblasts transfected with a temperature-sensitive mutant of simian virus-40 T-antigen at the permissive temperature or by treating hOB cells with phorbol ester tumor promoters also resulted in inhibition of IGF-dependent IGFBP-4 proteolysis. Inhibition was observed if phorbol ester was added to the cultures at the time of medium change or after the protease had been expressed and secreted. Differences in IGFBP-4 proteolysis could not be accounted for by changes in IGFBP-4 messenger RNA expression or substrate levels. These data suggest that transformation is associated with alterations in the IGFBP-4/IGFBP-4 protease system in osteoblastic cells. Normal human osteoblasts secrete an IGF-dependent IGFBP-4 protease. The induction of an inhibitor of the IGF-dependent IGFBP-4 proteolytic reaction may be associated with early transformation processes. Fully tumorigenic bone cells expressed neither IGFBP-4 protease nor protease inhibitor activity.

UR - http://www.scopus.com/inward/record.url?scp=84995821724&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84995821724&partnerID=8YFLogxK

U2 - 10.1210/endo.136.4.7534697

DO - 10.1210/endo.136.4.7534697

M3 - Article

VL - 136

SP - 1340

EP - 1347

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 4

ER -