Aging-related changes in respiratory system mechanics and morphometry in mice

Jonathan E. Elliott, Carlos Bernardo Mantilla, Christina M Pabelick, Anja Roden, Gary C Sieck

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20-and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2-and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear agingrelated changes in lung mechanics and morphometry in C57BL/6 mice.

Original languageEnglish (US)
Pages (from-to)L167-L176
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume311
Issue number1
DOIs
StatePublished - Jul 1 2016

Fingerprint

Respiratory Mechanics
Respiratory System
Compliance
Positive-Pressure Respiration
Electric Impedance
Inbred C57BL Mouse
Lung
Collagen
Mechanics

Keywords

  • Compliance
  • Mean linear intercept

ASJC Scopus subject areas

  • Physiology
  • Medicine(all)
  • Pulmonary and Respiratory Medicine
  • Cell Biology
  • Physiology (medical)

Cite this

@article{0a99c4a5c9ce4d36a4fae3cc0a8b3489,
title = "Aging-related changes in respiratory system mechanics and morphometry in mice",
abstract = "Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20-and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100{\%} survival, n = 6)-, 6 (100{\%} survival, n = 12)-, 18 (90{\%} survival, n = 12)-, 24 (75{\%} survival, n = 12)-, and 30 (25{\%} survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2-and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4{\%} paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear agingrelated changes in lung mechanics and morphometry in C57BL/6 mice.",
keywords = "Compliance, Mean linear intercept",
author = "Elliott, {Jonathan E.} and Mantilla, {Carlos Bernardo} and Pabelick, {Christina M} and Anja Roden and Sieck, {Gary C}",
year = "2016",
month = "7",
day = "1",
doi = "10.1152/ajplung.00232.2016",
language = "English (US)",
volume = "311",
pages = "L167--L176",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Aging-related changes in respiratory system mechanics and morphometry in mice

AU - Elliott, Jonathan E.

AU - Mantilla, Carlos Bernardo

AU - Pabelick, Christina M

AU - Roden, Anja

AU - Sieck, Gary C

PY - 2016/7/1

Y1 - 2016/7/1

N2 - Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20-and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2-and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear agingrelated changes in lung mechanics and morphometry in C57BL/6 mice.

AB - Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20-and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2-and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear agingrelated changes in lung mechanics and morphometry in C57BL/6 mice.

KW - Compliance

KW - Mean linear intercept

UR - http://www.scopus.com/inward/record.url?scp=84984636487&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84984636487&partnerID=8YFLogxK

U2 - 10.1152/ajplung.00232.2016

DO - 10.1152/ajplung.00232.2016

M3 - Article

C2 - 27288490

AN - SCOPUS:84984636487

VL - 311

SP - L167-L176

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 1

ER -