Adenoviral vectors expressing fusogenic membrane glycoproteins activated via matrix metalloproteinase cleavable linkers have significant antitumor potential in the gene therapy of gliomas

Cory Allen, Cari McDonald, Caterina Giannini, Kah Whye Peng, Gabriela Rosales, Stephen J. Russell, Evanthia Galanis

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Background. Fusogenic membrane glycoproteins (FMG) such as the gibbon ape leukemia virus envelope (GALV) glycoprotein are potent therapeutic transgenes with potential utility in the gene therapy of gliomas. Transfection of glioma cell lines with FMG expression constructs results in fusion with massive syncytia formation followed by cytotoxic cell death. Nevertheless, ubiquitous expression of the GALV receptor, Pit-1, makes targeting desirable in order to increase the specificity of the observed cytopathic effect. Here we report on use of matrix metalloproteinase (MMP)-cleavable linkers to target the cytotoxicity of FMG-expressing adenoviral vectors against gliomas. Methods. Replication-defective adenoviruses (Ad) were constructed expressing the hyperfusogenic version of the GALV glycoprotein linked to a blocking ligand (C-terminal extracellular domain of CD40 ligand) through either an MMP-cleavable linker (AdM40) or a non-cleavable linker (AdN40). Both viruses also co-expressed the green fluorescent protein (GFP) via an internal ribosomal entry site. Results. The glioma cell lines U87, U118, and U251 characterized by zymography and MMP-2 activity assay as high, medium and low MMP expressors, respectively, the MMP-poor cell lines TE671 and normal human astrocytes were infected with AdM40 and AdN40 at different multiplicities of infection (MOIs) from 1-30. Fusion was quantitated by counting both number and size of syncytia. Infection of these cell lines with AdN40 did not result in fusion or cytotoxic cell death, despite the presence of infection, as demonstrated by GFP positivity, therefore indicating that the displayed CD40 ligand blocked GALV-induced fusion. Fusion was restored after infection of glioma cells with AdM40 at an MOI as low as 1 to an extent dependent on MMP expression and coxsackie adenovirus receptor (CAR) expression in the specific cell line. Western immunoblotting demonstrated the presence of the cleaved CD40 ligand in the supernatant of fused glioma cells. Use of the MMP inhibitors 1,10 phenanthroline and N-hydroxy-5,5-dimethylpiperazine-2-carboxamide completely abolished AdM40-induced fusion, while the non-specific serine protease inhibitor soybean trypsin inhibitor did not affect it, thus demonstrating specificity of the observed effect. Intratumoral treatment of BalbC/nude mice bearing subcutaneous U87 glioma xenografts with AdM40 at a total dose of 1.2 × 1010 plaque-forming units (pfu resulted in statistically significant tumor regression as compared with control animals either treated with AdN40 (p = 0.01) or untreated animals (p = 0.01). Treatment with AdM40 also resulted in survival improvement as compared with AdN40-treated animals (p = 0.006) or untreated animals (p = 0.001). Histopathologic examination of treated tumors demonstrated extensive syncytia formation. Conclusions. Our data indicate that AdM40, a replication-defective adenovirus expressing the GALV fusogenic glycoprotein, attached to a blocking ligand via an MMP-cleavable linker, can target the cytotoxicity of GALV in MMP-overexpressing glioma lines and xenografts, and maintain significant antitumor activity both in vitro and in vivo. Given the high frequency of MMP overexpression in gliomas, AdM40 represents a potentially promising agent in the gene therapy of these tumors.

Original languageEnglish (US)
Pages (from-to)1216-1227
Number of pages12
JournalJournal of Gene Medicine
Volume6
Issue number11
DOIs
StatePublished - Nov 2004

Keywords

  • Adenovirus
  • GALV
  • Gliomas
  • Linkers
  • MMP
  • Targeting

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics
  • Drug Discovery
  • Genetics(clinical)

Fingerprint

Dive into the research topics of 'Adenoviral vectors expressing fusogenic membrane glycoproteins activated via matrix metalloproteinase cleavable linkers have significant antitumor potential in the gene therapy of gliomas'. Together they form a unique fingerprint.

Cite this