Adaptive immunity does not strongly suppress spontaneous tumors in a sleeping beauty model of cancer

Laura M. Rogers, Alicia K. Olivier, David K. Meyerholz, Adam J. Dupuy

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The tumor immunosurveillance hypothesis describes aprocessby which the immune system recognizes and suppresses the growth of transformed cancer cells. Avariety of epidemiological and experimental evidence supports this hypothesis. Nevertheless, there are a number of conflicting reports regarding the degree of immune protection conferred, the immune cell types responsible for protection, and the potential contributions of immunosuppressive therapies to tumor induction. The purpose of this study was to determine whether the adaptive immune system actively suppresses tumorigenesis in a Sleeping Beauty (SB) mouse model of cancer. SB transposon mutagenesis was performed in either a wild-type or immunocompromised (Rag2-null) background. Tumor latency and multiplicity were remarkably similar in both immune cohorts, suggesting that the adaptive immune system is not efficiently suppressing tumor formation in our model. Exceptions included skin tumors, which displayed increased multiplicity in wild-type animals, and leukemias, which developed with shorter latency in immune-deficient mice. Overall tumor distribution was also altered such that tumors affecting the gastrointestinal tract were more frequent and hemangiosarcomas were less frequent in immune-deficient mice compared with wild-type mice. Finally, genetic profiling of transposon-induced mutations identified significant differences in mutation prevalence for a number of genes, including Uba1. Taken together, these results indicate that B and T cells function to shape the genetic profile of tumors in various tumor types, despite being ineffective at clearing SB-induced tumors. To our knowledge, this study represents the first forward genetic screen designed to examine tumor immunosurveillance mechanisms.

Original languageEnglish (US)
Pages (from-to)4393-4399
Number of pages7
JournalJournal of Immunology
Volume190
Issue number8
DOIs
StatePublished - Apr 15 2013

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint Dive into the research topics of 'Adaptive immunity does not strongly suppress spontaneous tumors in a sleeping beauty model of cancer'. Together they form a unique fingerprint.

Cite this