TY - JOUR
T1 - Actions of a novel synthetic natriuretic peptide on hemodynamics and ventricular function in the dog
AU - Lainchbury, John G.
AU - Lisy, Ondrej
AU - Burnett, John C.
AU - Meyer, Donna M.
AU - Redfield, Margaret M.
PY - 2002
Y1 - 2002
N2 - Dendroaspis natriuretic peptide (DNP) is a recently discovered peptide with structural similarity to known natriuretic peptides. DNP has been shown to possess potent renal actions. Our objectives were to define the acute hemodynamic actions of DNP in normal anesthetized dogs and the acute effects of DNP on left ventricular (LV) function in conscious chronically instrumented dogs. In anesthetized dogs, DNP, but not placebo, decreased mean arterial pressure (141 ± 6 to 109 ± 7 mmHg, P < 0.05) and pulmonary capillary wedge pressure (5.8 ± 0.3 to 3.4 ± 0.2 mmHg, P < 0.05). Cardiac output decreased and systemic vascular resistance increased with DNP and placebo. DNP-like immunoreactivity and guanosine 3′,5′-cyclic monophosphate concentration increased without changes in other natriuretic peptides. In conscious dogs, DNP decreased LV end-systolic pressure (120 ± 7 to 102 ± 6 mmHg, P < 0.05) and volume (32 ± 6 to 28 ± 6 ml, P < 0.05) and LV end-diastolic volume (38 ± 5 to 31 ± 4 ml, P < 0.05) but not arterial elastance. LV end-systolic elastance increased (6.1 ± 0.7 to 7.4 ± 0.6 mmHg/ml, P < 0.05), and Tau decreased (31 ± 2 to 27 ± 1 ms, P < 0.05). The effects on hemodynamics, LV function, and second messenger generation suggest synthetic DNP may have a role as a cardiac unloading and lusitropic peptide.
AB - Dendroaspis natriuretic peptide (DNP) is a recently discovered peptide with structural similarity to known natriuretic peptides. DNP has been shown to possess potent renal actions. Our objectives were to define the acute hemodynamic actions of DNP in normal anesthetized dogs and the acute effects of DNP on left ventricular (LV) function in conscious chronically instrumented dogs. In anesthetized dogs, DNP, but not placebo, decreased mean arterial pressure (141 ± 6 to 109 ± 7 mmHg, P < 0.05) and pulmonary capillary wedge pressure (5.8 ± 0.3 to 3.4 ± 0.2 mmHg, P < 0.05). Cardiac output decreased and systemic vascular resistance increased with DNP and placebo. DNP-like immunoreactivity and guanosine 3′,5′-cyclic monophosphate concentration increased without changes in other natriuretic peptides. In conscious dogs, DNP decreased LV end-systolic pressure (120 ± 7 to 102 ± 6 mmHg, P < 0.05) and volume (32 ± 6 to 28 ± 6 ml, P < 0.05) and LV end-diastolic volume (38 ± 5 to 31 ± 4 ml, P < 0.05) but not arterial elastance. LV end-systolic elastance increased (6.1 ± 0.7 to 7.4 ± 0.6 mmHg/ml, P < 0.05), and Tau decreased (31 ± 2 to 27 ± 1 ms, P < 0.05). The effects on hemodynamics, LV function, and second messenger generation suggest synthetic DNP may have a role as a cardiac unloading and lusitropic peptide.
KW - Diastolic function
KW - Natriuretic peptides
KW - Systolic function
UR - http://www.scopus.com/inward/record.url?scp=0036087311&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036087311&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00388.2001
DO - 10.1152/ajpregu.00388.2001
M3 - Article
C2 - 11893602
AN - SCOPUS:0036087311
SN - 0363-6119
VL - 282
SP - R993-R998
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 4 51-4
ER -