Acid-activated insulin-like growth factor-binding protein-3 proteolysis in normal and transformed cells. Role of cathepsin D

Cheryl A Conover, D. D. De Leon

Research output: Contribution to journalArticle

101 Citations (Scopus)

Abstract

Insulin-like growth factor-binding protein-3 (IGFBP-3) is an important member of a family of proteins which binds IGF peptides and modulates their biological actions. In this study, we describe an acid-activated IGFBP-3 protease in media derived from a variety of human cell lines. Radiolabeled IGFBP-3 remained intact during incubation (pH 5.5-8) in media conditioned by normal and transformed human fibroblasts, MG-63 osteoblastic cells, and breast cancer cell lines MCF-7 and Hs578T. However, acidification of the conditioned medium samples (pH < 5.5) resulted in 125I-IGFBP-3 hydrolysis and the appearance of specific radiolabeled fragments. No proteolysis of 125I-IGFBP-3 occurred during incubation in unconditioned medium at neutral or acid pH. Estrogen treatment of estrogen receptor-positive MCF-7 cells enhanced acid-activatable IGFBP-3 proteolysis in the cell-conditioned medium but had no effect on proteolytic activity in estrogen receptor-negative Hs578T cells. The cell-derived IGFBP-3 protease was identified as the aspartic proteinase cathepsin D, based on acidic pH optimum, inhibition by pepstatin, distinctive proteolytic fragment pattern, and immunoreactivity with cathepsin D antisera. Furthermore, immunodepletion of cathepsin D effectively attenuated acid-activated IGFBP-3 proteolysis. These data suggest a role for cathepsin D in the regulation of cellular IGF action by virtue of its potential to alter the structure/function of IGFBP-3.

Original languageEnglish (US)
Pages (from-to)7076-7080
Number of pages5
JournalJournal of Biological Chemistry
Volume269
Issue number10
StatePublished - 1994

Fingerprint

Proteolysis
Cathepsin D
Insulin-Like Growth Factor Binding Protein 3
Acids
Conditioned Culture Medium
Estrogen Receptors
Cells
Aspartic Acid Proteases
Cell Line
Acidification
MCF-7 Cells
Fibroblasts
Immune Sera
Hydrolysis
Estrogens
Breast Neoplasms
Peptides

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{bcfe4368585542c697d56f55ab472896,
title = "Acid-activated insulin-like growth factor-binding protein-3 proteolysis in normal and transformed cells. Role of cathepsin D",
abstract = "Insulin-like growth factor-binding protein-3 (IGFBP-3) is an important member of a family of proteins which binds IGF peptides and modulates their biological actions. In this study, we describe an acid-activated IGFBP-3 protease in media derived from a variety of human cell lines. Radiolabeled IGFBP-3 remained intact during incubation (pH 5.5-8) in media conditioned by normal and transformed human fibroblasts, MG-63 osteoblastic cells, and breast cancer cell lines MCF-7 and Hs578T. However, acidification of the conditioned medium samples (pH < 5.5) resulted in 125I-IGFBP-3 hydrolysis and the appearance of specific radiolabeled fragments. No proteolysis of 125I-IGFBP-3 occurred during incubation in unconditioned medium at neutral or acid pH. Estrogen treatment of estrogen receptor-positive MCF-7 cells enhanced acid-activatable IGFBP-3 proteolysis in the cell-conditioned medium but had no effect on proteolytic activity in estrogen receptor-negative Hs578T cells. The cell-derived IGFBP-3 protease was identified as the aspartic proteinase cathepsin D, based on acidic pH optimum, inhibition by pepstatin, distinctive proteolytic fragment pattern, and immunoreactivity with cathepsin D antisera. Furthermore, immunodepletion of cathepsin D effectively attenuated acid-activated IGFBP-3 proteolysis. These data suggest a role for cathepsin D in the regulation of cellular IGF action by virtue of its potential to alter the structure/function of IGFBP-3.",
author = "Conover, {Cheryl A} and {De Leon}, {D. D.}",
year = "1994",
language = "English (US)",
volume = "269",
pages = "7076--7080",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "10",

}

TY - JOUR

T1 - Acid-activated insulin-like growth factor-binding protein-3 proteolysis in normal and transformed cells. Role of cathepsin D

AU - Conover, Cheryl A

AU - De Leon, D. D.

PY - 1994

Y1 - 1994

N2 - Insulin-like growth factor-binding protein-3 (IGFBP-3) is an important member of a family of proteins which binds IGF peptides and modulates their biological actions. In this study, we describe an acid-activated IGFBP-3 protease in media derived from a variety of human cell lines. Radiolabeled IGFBP-3 remained intact during incubation (pH 5.5-8) in media conditioned by normal and transformed human fibroblasts, MG-63 osteoblastic cells, and breast cancer cell lines MCF-7 and Hs578T. However, acidification of the conditioned medium samples (pH < 5.5) resulted in 125I-IGFBP-3 hydrolysis and the appearance of specific radiolabeled fragments. No proteolysis of 125I-IGFBP-3 occurred during incubation in unconditioned medium at neutral or acid pH. Estrogen treatment of estrogen receptor-positive MCF-7 cells enhanced acid-activatable IGFBP-3 proteolysis in the cell-conditioned medium but had no effect on proteolytic activity in estrogen receptor-negative Hs578T cells. The cell-derived IGFBP-3 protease was identified as the aspartic proteinase cathepsin D, based on acidic pH optimum, inhibition by pepstatin, distinctive proteolytic fragment pattern, and immunoreactivity with cathepsin D antisera. Furthermore, immunodepletion of cathepsin D effectively attenuated acid-activated IGFBP-3 proteolysis. These data suggest a role for cathepsin D in the regulation of cellular IGF action by virtue of its potential to alter the structure/function of IGFBP-3.

AB - Insulin-like growth factor-binding protein-3 (IGFBP-3) is an important member of a family of proteins which binds IGF peptides and modulates their biological actions. In this study, we describe an acid-activated IGFBP-3 protease in media derived from a variety of human cell lines. Radiolabeled IGFBP-3 remained intact during incubation (pH 5.5-8) in media conditioned by normal and transformed human fibroblasts, MG-63 osteoblastic cells, and breast cancer cell lines MCF-7 and Hs578T. However, acidification of the conditioned medium samples (pH < 5.5) resulted in 125I-IGFBP-3 hydrolysis and the appearance of specific radiolabeled fragments. No proteolysis of 125I-IGFBP-3 occurred during incubation in unconditioned medium at neutral or acid pH. Estrogen treatment of estrogen receptor-positive MCF-7 cells enhanced acid-activatable IGFBP-3 proteolysis in the cell-conditioned medium but had no effect on proteolytic activity in estrogen receptor-negative Hs578T cells. The cell-derived IGFBP-3 protease was identified as the aspartic proteinase cathepsin D, based on acidic pH optimum, inhibition by pepstatin, distinctive proteolytic fragment pattern, and immunoreactivity with cathepsin D antisera. Furthermore, immunodepletion of cathepsin D effectively attenuated acid-activated IGFBP-3 proteolysis. These data suggest a role for cathepsin D in the regulation of cellular IGF action by virtue of its potential to alter the structure/function of IGFBP-3.

UR - http://www.scopus.com/inward/record.url?scp=0028263970&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028263970&partnerID=8YFLogxK

M3 - Article

C2 - 7510281

AN - SCOPUS:0028263970

VL - 269

SP - 7076

EP - 7080

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 10

ER -