TY - JOUR
T1 - Accurate Reproduction of 161 Small-Molecule Complex Crystal Structures using the EUDOC Program
T2 - Expanding the Use of EUDOC to Supramolecular Chemistry
AU - Wang, Qi
AU - Pang, Yuan Ping
PY - 2007
Y1 - 2007
N2 - EUDOC is a docking program that has successfully predicted small-molecule-bound protein complexes and identified drug leads from chemical databases. To expand the application of the EUDOC program to supramolecular chemistry, we tested its ability to reproduce crystal structures of small-molecule complexes. Of 161 selected crystal structures of small-molecule guest-host complexes, EUDOC reproduced all these crystal structures with guest structure mass-weighted root mean square deviations (mwRMSDs) of <1.0 Å relative to the corresponding crystal structures. In addition, the average interaction energy of these 161 guest-host complexes (-50.1 kcal/mol) was found to be nearly half of that of 153 previously tested small-molecule-bound protein complexes (-108.5 kcal/mol), according to the interaction energies calculated by EUDOC. 31 of the 161 complexes could not be reproduced with mwRMSDs of <1.0 Å if neighboring hosts in the crystal structure of a guest-host complex were not included as part of the multimeric host system, whereas two of the 161 complexes could not be reproduced with mwRMSDs of <1.0 Å if water molecules were excluded from the host system. These results demonstrate the significant influence of crystal packing on small molecule complexation and suggest that EUDOC is able to predict small-molecule complexes and that it is useful for the design of new materials, molecular sensors, and multimeric inhibitors of protein-protein interactions.
AB - EUDOC is a docking program that has successfully predicted small-molecule-bound protein complexes and identified drug leads from chemical databases. To expand the application of the EUDOC program to supramolecular chemistry, we tested its ability to reproduce crystal structures of small-molecule complexes. Of 161 selected crystal structures of small-molecule guest-host complexes, EUDOC reproduced all these crystal structures with guest structure mass-weighted root mean square deviations (mwRMSDs) of <1.0 Å relative to the corresponding crystal structures. In addition, the average interaction energy of these 161 guest-host complexes (-50.1 kcal/mol) was found to be nearly half of that of 153 previously tested small-molecule-bound protein complexes (-108.5 kcal/mol), according to the interaction energies calculated by EUDOC. 31 of the 161 complexes could not be reproduced with mwRMSDs of <1.0 Å if neighboring hosts in the crystal structure of a guest-host complex were not included as part of the multimeric host system, whereas two of the 161 complexes could not be reproduced with mwRMSDs of <1.0 Å if water molecules were excluded from the host system. These results demonstrate the significant influence of crystal packing on small molecule complexation and suggest that EUDOC is able to predict small-molecule complexes and that it is useful for the design of new materials, molecular sensors, and multimeric inhibitors of protein-protein interactions.
UR - http://www.scopus.com/inward/record.url?scp=40749159291&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40749159291&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0000531
DO - 10.1371/journal.pone.0000531
M3 - Article
C2 - 17565384
AN - SCOPUS:40749159291
SN - 1932-6203
VL - 2
JO - PLoS One
JF - PLoS One
IS - 6
M1 - e531
ER -