Accurate characterization of metal implants and human materials using novel proton counting detector for monte carlo dose calculation in proton therapy

Serdar Charyyev, Chih Wei Chang, Joseph Harms, Cristina Oancea, S. Tim Yoon, Xiaofeng Yang, Tiezhi Zhang, Jun Zhou, Shuai Leng, Liyong Lin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Owing to poor characterization of implant and adjacent human tissues, the presence of metal implants has been shown to be a risk factor for clinical results for proton therapy. In this project we have developed a way of characterizing implant and human materials in terms of water-equivalent thicknesses (WET) and relative stopping power (RSP) using a novel proton counting detector. We tracked each proton using a fast spectral imaging camera AdvaPIX-TPX3 which operated in energy mode measures collected energy per-voxel to derive the deposited energy along the particle track across the voxelated sensor. We considered three scenarios: sampling of WET of a CIRS M701 Adult Phantom (CMAP) at different locations; measurements of energy perturbations in the CMAP implanted with metal rods; sampling of WET of a more complex spine phantom. WET and RSP information were extracted from energy spectra at position along the central axis by using the shift in the most probable energy (MPE) from the reference energy (either initial incident energy or energy without a metal implant). Measurements were compared to TOPAS simulation results. Measured WET of the CMAP ranged from 18.63 to 25.23 cm depending on the location of the sampling which agreed with TOPAS simulation results within 1.6%. The RSPs of metals from CMAP perturbation measurements were determined as 1.97, 2.98, and 5.44 for Al, Ti and CoCr, respectively, which agreed with TOPAS within 2.3%. RSPs for material composition of a more complex spine phantom yielded 1.096, 1.309 and 1.001 for Acrylic, PEEK and PVC, respectively. In summary, this work has shown a method to accurately characterize RSPs of metal and human materials of CMAP implanted with metals and a complex spine phantom. Using the data obtained by the proposed method, it may be possible to validate RSP maps provided by conventional photon computed tomography techniques. Owing to poor characterization of implant and adjacent human tissues, the presence of metal implants has been shown to be a risk factor for clinical results for proton therapy. In this project we have developed a way of characterizing implant and human materials in terms of water-equivalent thicknesses (WET) and relative stopping power (RSP) using a novel proton counting detector. We tracked each proton using a fast spectral imaging camera AdvaPIX-TPX3 which operated in energy mode measures collected energy per-voxel to derive the deposited energy along the particle track across the voxelated sensor. We considered three scenarios: sampling of WET of a CIRS M701 Adult Phantom (CMAP) at different locations; measurements of energy perturbations in the CMAP implanted with metal rods; sampling of WET of a more complex spine phantom. WET and RSP information were extracted from energy spectra at position along the central axis by using the shift in the most probable energy (MPE) from the reference energy (either initial incident energy or energy without a metal implant). Measurements were compared to TOPAS simulation results. Measured WET of the CMAP ranged from 18.63 to 25.23 cm depending on the location of the sampling which agreed with TOPAS simulation results within 1.6%. The RSPs of metals from CMAP perturbation measurements were determined as 1.97, 2.98, and 5.44 for Al, Ti and CoCr, respectively, which agreed with TOPAS within 2.3%. RSPs for material composition of a more complex spine phantom yielded 1.096, 1.309 and 1.001 for Acrylic, PEEK and PVC, respectively. In summary, this work has shown a method to accurately characterize RSPs of metal and human materials of CMAP implanted with metals and a complex spine phantom. Using the data obtained by the proposed method, it may be possible to validate RSP maps provided by conventional photon computed tomography techniques.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2021
Subtitle of host publicationPhysics of Medical Imaging
EditorsHilde Bosmans, Wei Zhao, Lifeng Yu
PublisherSPIE
ISBN (Electronic)9781510640191
DOIs
StatePublished - 2021
EventMedical Imaging 2021: Physics of Medical Imaging - Virtual, Online, United States
Duration: Feb 15 2021Feb 19 2021

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11595
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2021: Physics of Medical Imaging
Country/TerritoryUnited States
CityVirtual, Online
Period2/15/212/19/21

Keywords

  • Metal implants
  • Monte carlo
  • Proton counting
  • Proton therapy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Accurate characterization of metal implants and human materials using novel proton counting detector for monte carlo dose calculation in proton therapy'. Together they form a unique fingerprint.

Cite this