A hypoxia-driven occurrence of chronic kidney disease and osteoporosis in COPD individuals: New insights into environmental cadmium exposure

Aleksandar Cirovic, Aleksandar Denic, Bart L. Clarke, Robert Vassallo, Ana Cirovic, Greg M. Landry

Research output: Contribution to journalReview articlepeer-review

Abstract

Humans are exposed to cadmium via a variety of anthropogenic and natural pathways. Hypoxia, a key pathophysiological consequence of chronic obstructive pulmonary disease (COPD), as well as anemia, induce expression of many genes, including divalent metal transporter (DMT-1), to induce cell adaptation to decreased pO2. DMT-1 then becomes increasingly expressed in a majority of organs, specifically the duodenum and the kidney. DMT-1 serves as an iron transporter; however, it can transport other physiologically important elements, including manganese (Mn2+) and zinc (Zn2+), as well as highly toxic divalent cations such as cadmium (Cd2+). Chronic obstructive pulmonary disease (COPD) is a highly prevalent, non-communicable disease in populations > 40 years of age, and is a leading cause of death worldwide. Occurrence of comorbidities accompanying COPD, such as chronic kidney disease (CKD) and osteoporosis increase the mortality rate and costs of treatment. As cadmium has been shown to be significantly osteo- and nephrotoxic, its hazardous effects could deteriorate bone microarchitecture and decrease kidney function positioning it as a likely environmental contributor to comorbidity development. In this review, we highlight the important contribution of hypoxia-induced DMT-1 expression mediating a cadmium (Cd2+) overload-induced CKD and osteoporosis axes. Furthermore, individuals who suffer from chronic lung disease with hypoxic respiratory failure, such as severe COPD appear to be significantly more sensitive to cadmium toxicity than healthy individuals.

Original languageEnglish (US)
Article number153355
JournalToxicology
Volume482
DOIs
StatePublished - Dec 2022

Keywords

  • Cadmium
  • Chronic kidney disease
  • Chronic obstructive pulmonary disease
  • Divalent metal transporter 1
  • Hypoxia
  • Osteoporosis

ASJC Scopus subject areas

  • Toxicology

Fingerprint

Dive into the research topics of 'A hypoxia-driven occurrence of chronic kidney disease and osteoporosis in COPD individuals: New insights into environmental cadmium exposure'. Together they form a unique fingerprint.

Cite this