A definitive example of a geometric "entatic state" effect: Electron-transfer kinetics for a copper(ll/l) complex involving a quinquedentate macrocyclic trithiaether - Bipyridine ligand

Gezahegn Chaka, Jason L. Sonnenberg, H. Bernhard Schlegel, Mary Jane Heeg, Gregory Jaeger, Timothy J. Nelson, L. A. Ochrymowycz, D. B. Rorabacher

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

The quinquedentate macrocyclic ligand cyclo-6,6′-[1,9-(2,5,8- trithianonane)]-2,2′-bipyridine ([15]aneS3bpy = L), containing two pyridyl nitrogens and three thiaether sulfurs as donor atoms, has been synthesized and complexed with copper. The CuII/I redox potential, the stabilities of the oxidized and reduced complex, and the oxidation and reduction electron-transfer kinetics of the complex reacting with a series of six counter reagents have been studied in acetonitrile at 25°C, μ = 0.10 M (NaCIO4). The Marcus cross relationship has been applied to the rate constants obtained for the reactions with each of the six counter reagents to permit the evaluation of the electron self-exchange rate constant, k 11. The latter value has also been determined independently from NMR line-broadening experiments. The cumulative data are consistent with a value of k11 = 1 × 105 M-1 s1, ranking this among the fastest-reacting CuII/I systems, on a par with the blue copper proteins known as cupredoxins. The resolved crystal structures show that the geometry of the CuIIL and CuIL complexes are nearly identical, both exhibiting a five-coordinate square pyramidal geometry with the central sulfur donor atom occupying the apical site. The most notable geometric difference is a puckering of an ethylene bridge between two sulfur donor atoms in the CuIL complex. Theoretical calculations suggest that the reorganizational energy is relatively small, with the transition-state geometry more closely approximating the geometry of the CuIIL ground state. The combination of a nearly constant geometry and a large self-exchange rate constant implies that this CuII/I redox system represents a true geometric "entatic state."

Original languageEnglish (US)
Pages (from-to)5217-5227
Number of pages11
JournalJournal of the American Chemical Society
Volume129
Issue number16
DOIs
StatePublished - Apr 25 2007

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'A definitive example of a geometric "entatic state" effect: Electron-transfer kinetics for a copper(ll/l) complex involving a quinquedentate macrocyclic trithiaether - Bipyridine ligand'. Together they form a unique fingerprint.

Cite this