A deep learning algorithm for detecting lytic bone lesions of multiple myeloma on CT

Shahriar Faghani, Francis I. Baffour, Michael D. Ringler, Matthew Hamilton-Cave, Pouria Rouzrokh, Mana Moassefi, Bardia Khosravi, Bradley J. Erickson

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Whole-body low-dose CT is the recommended initial imaging modality to evaluate bone destruction as a result of multiple myeloma. Accurate interpretation of these scans to detect small lytic bone lesions is time intensive. A functional deep learning) algorithm to detect lytic lesions on CTs could improve the value of these CTs for myeloma imaging. Our objectives were to develop a DL algorithm and determine its performance at detecting lytic lesions of multiple myeloma. Methods: Axial slices (2-mm section thickness) from whole-body low-dose CT scans of subjects with biochemically confirmed plasma cell dyscrasias were included in the study. Data were split into train and test sets at the patient level targeting a 90%/10% split. Two musculoskeletal radiologists annotated lytic lesions on the images with bounding boxes. Subsequently, we developed a two-step deep learning model comprising bone segmentation followed by lesion detection. Unet and “You Look Only Once” (YOLO) models were used as bone segmentation and lesion detection algorithms, respectively. Diagnostic performance was determined using the area under the receiver operating characteristic curve (AUROC). Results: Forty whole-body low-dose CTs from 40 subjects yielded 2193 image slices. A total of 5640 lytic lesions were annotated. The two-step model achieved a sensitivity of 91.6% and a specificity of 84.6%. Lesion detection AUROC was 90.4%. Conclusion: We developed a deep learning model that detects lytic bone lesions of multiple myeloma on whole-body low-dose CTs with high performance. External validation is required prior to widespread adoption in clinical practice.

Original languageEnglish (US)
Pages (from-to)91-98
Number of pages8
JournalSkeletal Radiology
Volume52
Issue number1
DOIs
StateAccepted/In press - 2022

Keywords

  • Bone segmentation
  • Deep learning
  • Lesion detection
  • Multiple myeloma
  • Whole-body low-dose CT

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'A deep learning algorithm for detecting lytic bone lesions of multiple myeloma on CT'. Together they form a unique fingerprint.

Cite this