A cytokine duet regulates inammatory bowel disease

Research output: Contribution to journalComment/debate

1 Citation (Scopus)

Abstract

Inhibition of IL-17F, but not IL-17A, promotes microbiota-mediated regulatory T cell generation in the colon and ameliorates intestinal inammation in mice. Interleukin 17-A (IL-17A) is a key proinammatory cytokine that contributes to several autoimmune diseases. However, treatment of inammatory bowel diseases (IBD) utilizing anti-IL-17A was not successful and sometimes exacerbated symptoms in clinical trials. IL-17A has a close cousin, IL-17F. The genes encoding both cytokines share high similarity. T cells are known to be involved in IBD, and they produce both cytokines. In the intestine, IL-17A is primarily produced by activated T cells. In contrast, IL-17F is constitutively produced by all types of intestinal cells, including T cells, natural killer cells, dendritic cells, and epithelial cells. How IL- 17F contributes to IBD remains largely unknown. Tang and colleagues addressed this question using different colitis models in mice decient for IL-17A, IL-17F, or both cytokines. Their data showed that whereas IL-17A deciency led to colitis with similar or worse pathology than controls, IL-17F or IL-17A/IL-17F deciency protected against colitis symptoms. Protection was associated with increased intestinal regulatory T cell (Treg) frequency. The Treg expansion was induced by overcolonization of Treg-promoting commensal bacteria, Clostridium cluster XIVa (C. XIVa) and Lactobacillus murinus. Mice with colitis had elevated constitutive IL-17F production in the intestine compared with healthy mice. IL-17F induced production of certain antimicrobial peptides that suppressed C. XIVa and L. murinus. Furthermore, IL-17F produced by both T cells and non-T cells contributed to the colitis pathology. Importantly, treatment with anti-IL-17F antibody, but not anti-IL-17A antibody, reduced severity of symptoms. In most cases, IL-17A plays a dominant role, whereas IL-17F serves a marginal but similar function. This study illustrates the context-dependent functions of two closely related cytokines. In the intestine, these cytokines have opposite functions, and IL-17F dominates IL-17A to promote inammation. The rising incidence of IBD globally necessitates new targeted therapy. Although this study was carried out in animal models, it provides mechanistic rationale to target IL-17F or IL-17F-regulated microbiota for the treatment of IBD in future clinical studies.

Original languageEnglish (US)
Article numbereaau4583
Pages (from-to)7DUMMY
JournalScience Translational Medicine
Volume10
Issue number450
DOIs
StatePublished - Jul 18 2018

Fingerprint

Interleukin-17
Cytokines
Colitis
Intestines
T-Lymphocytes
Microbiota
Regulatory T-Lymphocytes

ASJC Scopus subject areas

  • Medicine(all)

Cite this

A cytokine duet regulates inammatory bowel disease. / Zeng, Hu.

In: Science Translational Medicine, Vol. 10, No. 450, eaau4583, 18.07.2018, p. 7DUMMY.

Research output: Contribution to journalComment/debate

@article{71fe2dbb9942462ba62ecf26ee17a70b,
title = "A cytokine duet regulates inammatory bowel disease",
abstract = "Inhibition of IL-17F, but not IL-17A, promotes microbiota-mediated regulatory T cell generation in the colon and ameliorates intestinal inammation in mice. Interleukin 17-A (IL-17A) is a key proinammatory cytokine that contributes to several autoimmune diseases. However, treatment of inammatory bowel diseases (IBD) utilizing anti-IL-17A was not successful and sometimes exacerbated symptoms in clinical trials. IL-17A has a close cousin, IL-17F. The genes encoding both cytokines share high similarity. T cells are known to be involved in IBD, and they produce both cytokines. In the intestine, IL-17A is primarily produced by activated T cells. In contrast, IL-17F is constitutively produced by all types of intestinal cells, including T cells, natural killer cells, dendritic cells, and epithelial cells. How IL- 17F contributes to IBD remains largely unknown. Tang and colleagues addressed this question using different colitis models in mice decient for IL-17A, IL-17F, or both cytokines. Their data showed that whereas IL-17A deciency led to colitis with similar or worse pathology than controls, IL-17F or IL-17A/IL-17F deciency protected against colitis symptoms. Protection was associated with increased intestinal regulatory T cell (Treg) frequency. The Treg expansion was induced by overcolonization of Treg-promoting commensal bacteria, Clostridium cluster XIVa (C. XIVa) and Lactobacillus murinus. Mice with colitis had elevated constitutive IL-17F production in the intestine compared with healthy mice. IL-17F induced production of certain antimicrobial peptides that suppressed C. XIVa and L. murinus. Furthermore, IL-17F produced by both T cells and non-T cells contributed to the colitis pathology. Importantly, treatment with anti-IL-17F antibody, but not anti-IL-17A antibody, reduced severity of symptoms. In most cases, IL-17A plays a dominant role, whereas IL-17F serves a marginal but similar function. This study illustrates the context-dependent functions of two closely related cytokines. In the intestine, these cytokines have opposite functions, and IL-17F dominates IL-17A to promote inammation. The rising incidence of IBD globally necessitates new targeted therapy. Although this study was carried out in animal models, it provides mechanistic rationale to target IL-17F or IL-17F-regulated microbiota for the treatment of IBD in future clinical studies.",
author = "Hu Zeng",
year = "2018",
month = "7",
day = "18",
doi = "10.1126/scitranslmed.aau4583",
language = "English (US)",
volume = "10",
pages = "7DUMMY",
journal = "Science Translational Medicine",
issn = "1946-6234",
publisher = "American Association for the Advancement of Science",
number = "450",

}

TY - JOUR

T1 - A cytokine duet regulates inammatory bowel disease

AU - Zeng, Hu

PY - 2018/7/18

Y1 - 2018/7/18

N2 - Inhibition of IL-17F, but not IL-17A, promotes microbiota-mediated regulatory T cell generation in the colon and ameliorates intestinal inammation in mice. Interleukin 17-A (IL-17A) is a key proinammatory cytokine that contributes to several autoimmune diseases. However, treatment of inammatory bowel diseases (IBD) utilizing anti-IL-17A was not successful and sometimes exacerbated symptoms in clinical trials. IL-17A has a close cousin, IL-17F. The genes encoding both cytokines share high similarity. T cells are known to be involved in IBD, and they produce both cytokines. In the intestine, IL-17A is primarily produced by activated T cells. In contrast, IL-17F is constitutively produced by all types of intestinal cells, including T cells, natural killer cells, dendritic cells, and epithelial cells. How IL- 17F contributes to IBD remains largely unknown. Tang and colleagues addressed this question using different colitis models in mice decient for IL-17A, IL-17F, or both cytokines. Their data showed that whereas IL-17A deciency led to colitis with similar or worse pathology than controls, IL-17F or IL-17A/IL-17F deciency protected against colitis symptoms. Protection was associated with increased intestinal regulatory T cell (Treg) frequency. The Treg expansion was induced by overcolonization of Treg-promoting commensal bacteria, Clostridium cluster XIVa (C. XIVa) and Lactobacillus murinus. Mice with colitis had elevated constitutive IL-17F production in the intestine compared with healthy mice. IL-17F induced production of certain antimicrobial peptides that suppressed C. XIVa and L. murinus. Furthermore, IL-17F produced by both T cells and non-T cells contributed to the colitis pathology. Importantly, treatment with anti-IL-17F antibody, but not anti-IL-17A antibody, reduced severity of symptoms. In most cases, IL-17A plays a dominant role, whereas IL-17F serves a marginal but similar function. This study illustrates the context-dependent functions of two closely related cytokines. In the intestine, these cytokines have opposite functions, and IL-17F dominates IL-17A to promote inammation. The rising incidence of IBD globally necessitates new targeted therapy. Although this study was carried out in animal models, it provides mechanistic rationale to target IL-17F or IL-17F-regulated microbiota for the treatment of IBD in future clinical studies.

AB - Inhibition of IL-17F, but not IL-17A, promotes microbiota-mediated regulatory T cell generation in the colon and ameliorates intestinal inammation in mice. Interleukin 17-A (IL-17A) is a key proinammatory cytokine that contributes to several autoimmune diseases. However, treatment of inammatory bowel diseases (IBD) utilizing anti-IL-17A was not successful and sometimes exacerbated symptoms in clinical trials. IL-17A has a close cousin, IL-17F. The genes encoding both cytokines share high similarity. T cells are known to be involved in IBD, and they produce both cytokines. In the intestine, IL-17A is primarily produced by activated T cells. In contrast, IL-17F is constitutively produced by all types of intestinal cells, including T cells, natural killer cells, dendritic cells, and epithelial cells. How IL- 17F contributes to IBD remains largely unknown. Tang and colleagues addressed this question using different colitis models in mice decient for IL-17A, IL-17F, or both cytokines. Their data showed that whereas IL-17A deciency led to colitis with similar or worse pathology than controls, IL-17F or IL-17A/IL-17F deciency protected against colitis symptoms. Protection was associated with increased intestinal regulatory T cell (Treg) frequency. The Treg expansion was induced by overcolonization of Treg-promoting commensal bacteria, Clostridium cluster XIVa (C. XIVa) and Lactobacillus murinus. Mice with colitis had elevated constitutive IL-17F production in the intestine compared with healthy mice. IL-17F induced production of certain antimicrobial peptides that suppressed C. XIVa and L. murinus. Furthermore, IL-17F produced by both T cells and non-T cells contributed to the colitis pathology. Importantly, treatment with anti-IL-17F antibody, but not anti-IL-17A antibody, reduced severity of symptoms. In most cases, IL-17A plays a dominant role, whereas IL-17F serves a marginal but similar function. This study illustrates the context-dependent functions of two closely related cytokines. In the intestine, these cytokines have opposite functions, and IL-17F dominates IL-17A to promote inammation. The rising incidence of IBD globally necessitates new targeted therapy. Although this study was carried out in animal models, it provides mechanistic rationale to target IL-17F or IL-17F-regulated microbiota for the treatment of IBD in future clinical studies.

UR - http://www.scopus.com/inward/record.url?scp=85050406987&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85050406987&partnerID=8YFLogxK

U2 - 10.1126/scitranslmed.aau4583

DO - 10.1126/scitranslmed.aau4583

M3 - Comment/debate

VL - 10

SP - 7DUMMY

JO - Science Translational Medicine

JF - Science Translational Medicine

SN - 1946-6234

IS - 450

M1 - eaau4583

ER -