A coupled tube-tissue model for frequency calculation of arterial tubes with tissue

Research output: Contribution to journalConference articlepeer-review

Abstract

Vibro-acoustography is a new noncontact imaging method based on the radiation force of ultrasound. We extend this new technique for tissue characterization of arterial vessels by vibration techniques. In this paper a theoretical model for vibration analysis of arterial vessel with tissue is developed. Experimental studies were carried out on a silicone rubber tube embedded in a cylindrical gelatin phantom of larger radius, which simulates a large artery and the tissue body. The fundamental mode is well excited by the radiation force of ultrasound. The fundamental frequency was measured 81.8 Hz for a tube-phantom structure that is quite close to our theoretical prediction of 83.3 Hz.

Original languageEnglish (US)
Pages (from-to)107-108
Number of pages2
JournalAmerican Society of Mechanical Engineers, Bioengineering Division (Publication) BED
Volume55
DOIs
StatePublished - Jan 1 2003
Event2003 ASME International Mechanical Engineering Congress - Washington, DC., United States
Duration: Nov 15 2003Nov 21 2003

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint

Dive into the research topics of 'A coupled tube-tissue model for frequency calculation of arterial tubes with tissue'. Together they form a unique fingerprint.

Cite this