3D reconstruction of the left ventricle from four echocardiographic projections

Navaneetha Krishnan Rajan, Zeying Song, Kenneth R. Hoffmann, Marek Belohlavek, Eileen M. McMahon, Iman Borazjani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The left ventricle (LV) of a human heart receives oxygenated blood from the lungs and pumps it throughout the body via the aortic valve. Characterizing the LV geometry, its motion, and the ventricular flow is critical in assessing the heart's health. An automated method has been developed in this work to generate a three-dimensional (3D) model of the LV from multiple-axis echocardiography (echo). Image data from three long-axis sections and a basal section is processed to compute spatial nodes on the LV surface. The generated surfaces are output in a standard format such that it can be imported into the curvilinearimmersed boundary (CURVIB) framework for numerical simulation of the flow inside the LV. The 3D LV model can be used for better understanding of the ventricular motion and the simulation framework provides a powerful tool for studying left ventricular flows on a patient specific basis. Future work would incorporate data from additional cross-sectional images.

Original languageEnglish (US)
Title of host publication34th Computers and Information in Engineering Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846285
DOIs
StatePublished - 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: Aug 17 2014Aug 20 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume1A

Other

OtherASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Country/TerritoryUnited States
CityBuffalo
Period8/17/148/20/14

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of '3D reconstruction of the left ventricle from four echocardiographic projections'. Together they form a unique fingerprint.

Cite this