Abstract
Readmissions to a hospital after procedures are costly and considered to be an indication of poor quality. As Per the Affordable Care Act of 2010, hospitals may be reimbursed at a reduced rate for patients readmitted to a hospital within 30 days of discharge. In this project, we used statistical and machine-learning methods to analyze the Nationwide Inpatient Sample dataset provided by HCUP (Healthcare Cost and Utilization Project) to identify various clinical, demographic and socio-economic factors that play crucial roles in predicting the revenue loss due to readmissions. Three medical conditions, namely chronic obstructive pulmonary disorder (COPD), total hip arthroplasty (THA), and total knee arthroplasty (TKA) have been primarily used for this purpose. Our analysis builds on both non-parametric and parametric statistical models and machine learning techniques such as Decision Tree, Gradient Boosting, Logistic Regression and Neural Networks. We evaluated and compared these models based on Area under ROC (AUC) and misclassification rate. By including visual analytics, this analysis not only enables the hospitals to compute the loss of revenue but also monitors their quality of service in a real-time fashion.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015 |
Editors | Feng Luo, Kemafor Ogan, Mohammed J. Zaki, Laura Haas, Beng Chin Ooi, Vipin Kumar, Sudarsan Rachuri, Saumyadipta Pyne, Howard Ho, Xiaohua Hu, Shipeng Yu, Morris Hui-I Hsiao, Jian Li |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2922-2924 |
Number of pages | 3 |
ISBN (Electronic) | 9781479999255 |
DOIs | |
State | Published - Dec 22 2015 |
Externally published | Yes |
Event | 3rd IEEE International Conference on Big Data, IEEE Big Data 2015 - Santa Clara, United States Duration: Oct 29 2015 → Nov 1 2015 |
Other
Other | 3rd IEEE International Conference on Big Data, IEEE Big Data 2015 |
---|---|
Country/Territory | United States |
City | Santa Clara |
Period | 10/29/15 → 11/1/15 |
Keywords
- Area under ROC (AUC)
- Data Visualization
- Hospital Readmissions
- Misclassification rate
- Multi Model Evaluation
ASJC Scopus subject areas
- Computer Networks and Communications
- Computer Science Applications
- Information Systems
- Software