Type A CCK Receptor Structure Function and Regulation

Project: Research project

Project Details

Description

this
This proposal to examine the molecular basis of cholecystokinin (CCK) receptor structure, function, and
regulation supports the long-term goal of understanding the roles of this gastrointestinal hormone in health
and disease. CCK is important for nutrient assimilation, with roles in regulating post-cibal pancreatic
secretion, gallbladder emptying, gut transit, and satiety. The general underlying hypothesis is that
understanding the CCK receptor requires insights into its global structure and molecular interactions
throughout its dynamic life. Component aims are directed to each of three key CCK receptor domains, (i)
the external face that is responsible for ligand binding, (ii) the internal face that is important for signal
initiation and receptor regulation, and (iii)the intramembranousface that represents a potential site for
interactions with other membrane proteins. Each aim is driven by hypotheses dealing with current concepts
of functions and interactions that might occur at that site, with relevance for mechanisms of
pharmacoregulation. Aim 1 examines the hypothesis that ligands with distinct chemical structures can
induce similar global receptor conformations by interacting with distinct receptor domains. Studies utilize
photoaffinity labeling, receptor mutagenesis, and fluorescence transfer techniques to gain insights into the
binding of peptide and non-peptidyl agonists and antagonists. Aim 2 explores the hypothesis that receptor
phosphorylation exposes previously hidden receptor domains that can interact with regulatory molecules.
Studies utilize over-expression competition strategies to identify important cytosolic domains, and use
biochemical and molecular biological techniques to identify molecules interacting with these. Aim 3
explores intramembranous interactions with the receptor that could have functional significance.
Bioluminescence resonance energy transfer and cross-linking techniques are utilized. The proposed work
builds on the unique strengths and experience of the laboratory and the tools that have been developed and
xtensively characterized in previous cycles of this grant. Together, these studies should provide the finest
level of molecular detail yet available for the structure, mechanism of binding, and mechanisms of regulation
of any peptide hormone receptor in this superfamily, while providing insights useful for the development and
refinement of receptor- and cell-specific therapeutic intervention.
Mayo Foundation Rochester
200 First Street, S.W.
Rochester, MN 55905
StatusNot started

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.