Systematic Vertebrate Functional Genomics

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant): The vertebrate genome contains a predicted 20,000+ genes, many of unknown biological role(s). In addition, a large fraction of these molecules have distinct functions in diverse processes. The functional annotation of genes is one of the major next steps in understanding the vertebrate genome. Indeed, despite over a decade after the completion of the human genome effort, the diversity of genes undergoing active research has not substantially changed. We have developed a collection of gene-break transposon (GBT) alleles for use in phenotypic annotation of the vertebrate genome using the preeminent non-mammalian model organism, the zebrafish (Danio rerio). GBTs represent an innovative methodology to ask current questions while also serving as a platform for new scientific query. We will use our ongoing 500 GBT collection as a platform of candidate gene mutations for assessment of the vertebrate phenome. In this competitive renewal, we will focus on the annotation of biological function to identify new players in development as well as a set of clinically relevant biological processes. We will accomplish this goal through the following specific aims: Specific Aim I. We will conduct phenotypic annotation of 500+ GBT lines for genes required for zebrafish embryonic and early larval development. Specific Aim II. We will conduct phenotypic annotation of skin-expressed proteins required for formation of the integument during development and for genes required for the skin's wound healing response. Specific Aim III: We will identify cardiac mutants for annotation of gene functions in either cardiogenesis or adult cardiomyopathy. Specific Aim IV. We will identify genes required for digestive organ formation, lipid metabolism and lipid signaling. Specific Aim V. Recording of GBT gene function annotation using PATO-compliant phenotypic assessment description and integration into ongoing zebrafish functional databases including zfishbook and ZFIN. We selected embryonic development due to the advantages of external development of the zebrafish, cardiac biology and function due to the critical role of heart disease as the leading cause of death in the US, integument biology due to the strong impact of skin disease on one in three Americans, and lipid biology in development and physiology due to its critical role(s) in development, heart disease and obesity. Together, this project will annotate a panel of new genes for the better understanding of human health and disease.
StatusFinished
Effective start/end date9/1/015/31/21

Funding

  • National Institute of General Medical Sciences: $30,000.00
  • National Institute of General Medical Sciences: $551,711.00
  • National Institute of General Medical Sciences: $512,748.00
  • National Institute of General Medical Sciences: $532,820.00
  • National Institute of General Medical Sciences: $546,592.00
  • National Institute of General Medical Sciences: $573,075.00
  • National Institute of General Medical Sciences: $535,601.00
  • National Institute of General Medical Sciences: $515,108.00
  • National Institute of General Medical Sciences: $8,455,352.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.