ROLE OF TGF-B INDUCIBLE EARLY GENE IN OSTEOCLASTOGENESIS

Project: Research project

Project Details

Description

Modulation of osteoclast numbers has a profound influence on osteoclast-mediated bone degradation in both
pathological bone loss and during normal bone metabolism. TGF-li is abundant in the bone environment and
has been implicated in regulation of osteoclast differentiation. We have discovered TIEG1 (TIEG), a
transcription factor whose expression is rapidly increased in human osteoblasts following TGF-R treatment.
To better understand TIEG's role(s) in bone metabolism, we have generated mice lacking TIEG. Bones from
these mice are weaker and smaller with increased trabecular spacing in the femoral head compared to age
matched wildtype littermates. Marrow- and spleen-derived osteoclast precursors from the TIEG-/- mice have
an amplified ability to differentiate into osteoclasts in vitro and enhanced NFKB activation. Moreover, TGF-fl
treatment during differentiation did not stimulate differentiation, unlike osteoclast precursors from wildtype
mice. Calvarial-derived TIEG-/- osteoblasts have a reduced capactiy to support osteoclast differentiation, in
part due to increased OPG and decreased RANKL expression. These observations and the published
literature lead to our central hypothesis that TIEG expression in both osteoclast precursors and osteoblastic
support cells is important in modulating osteoclast differentiation and that osteoclast precursor TIEG
expression is essential for TGF-li stimulation of differentiation. To test this hypothesis, the Specific Aims of
this proposal are to 1. Elucidate the mechanisms by which NFKB pathway activation is enhanced in TIEG-/-
osteoclast precursors. 2. Resolve the role of enhanced NFKB signaling in the increased differentiation of
TIEG-/- osteoclast precursors. 3. Determine the roles of TIEG in TGF-li stimulation of osteoclast precursor
differentiation in vitro. 4. Discover the molecular mechanisms involved in the increased expression of OPG
mRNA and protein in TIEG-/- calvarial cells cultured in vitro. 5. Ascertain the mechanism of TIEG stimulation
of RANKL gene expression in osteoblasts. Since the rate of bone loss is mainly determined by the number of
osteoclasts, understanding regulation of osteoclast differentiation is likely to provide important avenues for
therapies to slow bone degradation during pathological bone loss. These studies will add to this knowledge
and increase our understanding of osteoclast-mediated bone loss. Further, these studies should provide key
information on the molecular mechanisms of osteoclast differentiation.
StatusNot started

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.