Progranulin, TAR DNA binding protein-43 and Cell Death

Project: Research project

Project Details


PROJECT/SUMMARY ABSTRACT We recently found that null mutations in the gene encoding the secreted growth factor progranulin (PGRN) are a frequent cause of frontotemporal dementia, particularly in patients affected with the pathological subtype referred to as frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) 9-11. Subsequently, the major protein that makes up the inclusions found in FTLD-U (and in amyotrophic lateral sclerosis, ALS) was identified as TAR DNA-binding protein-43 (TDP-43), an obscure nuclear protein known to be involved in exon splicing 12. Subsequent to this finding, mutations in the gene encoding TDP-43 (TARDBP) were identified as a direct cause of neurodegeneration in sporadic and familial patients with ALS. We have shown that decreasing PGRN expression leads to pathological processing of TDP-43 by caspases in cell culture models 13. Moreover, recent preliminary data revealed that deletion of progranulin in C. elegans leads to increased cleavage of endogenous TDP-43 strongly supporting our in vitro findings. Without PGRN or mutations in TARDBP, TDP-43 gets cleaved, which leads to translocation from the nucleus to the cytosol, a pathologic phenotype which resembles what happens to TDP-43 in patients with FTLD-U or ALS. Thus, loss of TDP-43 function due to inappropriate cleavage, translocation, or inclusion formation could play an important role in neurodegeneration. We also hypothesize that PGRN mutations other than null mutations, such as missense mutations, or causal TARDBP mutations can sufficiently abolish PGRN and TDP-43 functions to cause neurodegeneration. The overall goals of our proposal are 1) to provide additional mechanistic insight into the PGRN/TDP-43 axis in neurodegenerative diseases;2) to determine whether the shorter TDP-43 fragments are more fibrillogenic, are neurotoxic and can sequester nuclear TDP-43, a property that would explain the formation of inclusions, redistribution and neurodegeneration seen in FTLD-U and ALS;and 3) to explore neurodegenerative disease mechanism associated with TARDBP mutations. Our hypothesis is that loss of functional PGRN leads to loss of functional TDP-43, which leads to cell death.
Effective start/end date7/1/093/31/10


  • National Institute on Aging: $382,500.00


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.