Neuroregeneration in the Enteric Nervous System

Project: Research project

Description

? DESCRIPTION (provided by applicant): The overall goal of these studies is to understand the mechanisms of enteric neuroregeneration in order to develop therapies targeted toward endogenous repopulation of the enteric nervous system (ENS) for the treatment of enteric neuropathy. Enteric neuropathy, which contribute to numerous digestive diseases including idiopathic gastroparesis, chronic intestinal pseudoobstruction (CIPO) Hirshsprung's disease, Chagas' disease, achalasia, and possibly slow transit constipation, are characterized by damage or loss of enteric neurons. Existing animal models of enteric neuropathy, i.e., genetic aganglionosis are characterized by complete loss of neural crest cells including neurons and glia. This complete loss, while recapitulating severe congenital human enteric neuropathy, is in contrast to most enteric neuropathy in humans, which are characterized by less severe neuronal loss, and importantly essentially precludes endogenous neural regeneration by neural crest precursors. Overcoming this limitation, we developed a novel low-dose, instead of the traditional high-dose, benzalkonium chloride (BAC) model in the murine small intestine to induce a loss of 50% of neurons, and robust neuroregeneration. It is the only animal model to date that demonstrates robust endogenous neuroregeneration. Using this model with novel transgenic mouse strains and additional in vitro approaches, we will test the overall hypothesis that regeneration of the myenteric plexus is mediated by transdifferentiation of enteric glia to neurons via a SRY-related homeobox transcription factor 2 (SOX2)- dependent mechanism. Our overall hypothesis will be tested by experiments directed at two specific aims. Specific Aim 1 will determine the source and functionality of new neurons following BAC treatment because currently, the cellular origin and function of regenerating neurons are not understood. This aim will be met by testing three hypotheses: 1.1) new neurons derive from enteric cells that express glial fibrillary acidic protein (GFAP); 1.2) glia directly transdifferentiate into neurons; and 1.3 neurons derived from enteric glia are functional and diverse. Enteric glia as a manipulable endogenous source of enteric neurons would be a significant advance because glia outnumber neurons 4:1 in the ENS and are continually replenished by constitutive gliogenesis. Specific Aim 2 will determine the signaling pathways that contribute to enteric neuroregeneration. This aim will be met by testing three hypotheses: 2.1) SOX2 expression in glia is necessary and sufficient to generate new neurons; 2.2) bone morphogenic protein 2 (BMP2) induces SOX2 expression in enteric glial cells; and 2.3) SOX2 reprograms enteric glia to neurons by removing RE1-silencing transcription factor (REST)-mediated repression of neural genes. Results of the proposed studies, involving morphological and molecular characterization of novel transgenic mouse strains for genetic lineage tracing, clonal analysis, and molecular targeting, will provide a
mechanistic understanding of enteric neuroregeneration and provide the basis for novel therapeutic approaches for the treatment of enteric neuropathy.
StatusFinished
Effective start/end date8/15/154/30/18

Funding

  • National Institutes of Health: $357,750.00
  • National Institutes of Health: $357,750.00

Fingerprint

Enteric Nervous System
Neuroglia
Neurons
Intestinal Pseudo-Obstruction
Benzalkonium Compounds
Neural Crest
Transgenic Mice
SOXB1 Transcription Factors
Regeneration
Animal Models
Gastroparesis
Myenteric Plexus
Esophageal Achalasia
Chagas Disease
Homeobox Genes
Glial Fibrillary Acidic Protein
Constipation
Small Intestine

ASJC

  • Medicine(all)