Measles virus C protein: polymerase interactions and innate immunity evasion

Project: Research project

Project Details


The small basic C protein is a virulence factor that contributes to innate immunity evasion of Paramyxoviridae, but its mechanisms of action are incompletely understood. Focusing on the measles virus (MeV) C protein, we have shown that, first, it promotes accurate RNA synthesis by limiting the production of defective-interfering (DI) RNA. Second, we show here that C is recruited to sites of replication only when the large (L) subunit of the viral polymerase is present, suggesting the possibility of direct L-C protein interactions. We seek now to characterize the mechanisms of C protein action. The central hypothesis is that it is a co-factor that regulates RNA synthesis and enhances polymerase accuracy, thereby limiting the generation of DI RNA and the activation of innate immunity. The specific aims are, first, to assess how C interacts with L to promote polymerase accuracy. Second, to characterize how the C protein regulates viral genome replication and transcription. Third, to assess whether transcripts produced by copy-back DI RNAs are the main activator of the interferon response.
StatusNot started


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.