Long Field Of View MRA Using Continuous Table Motion

Project: Research project

Project Details


The long term objective of this project continues to be the development of methods which permit MR data acquisition
during continuous motion of the patient table for contrast-enhanced MR angiographic studies of the
peripheral vasculature. This will allow diagnostic quality imaging of the vasculature from the abdomen and
pelvis to the feet to allow diagnosis and characterization of peripheral vascular disease. Imaging during continuous
table motion permits high efficiency in the use of scan time and of the contrast dose. Because a given
axial level is imaged within the moving field-of-view for only a limited time, typically 20 seconds or less, it is
critical to allow improvements in spatial resolution for a given acquisition time. To this end, acceleration techniques
demonstrated in Years 01-04 in one dimension will be extended to the two lateral dimensions. Another
major aim of the study is to image the contrast dose transit in real time, automatically track its position, and use
this information to automatically adjust the table velocity. The grant application includes the following specific
1. High Resolution CE-MRA of a Fixed FOV Using 2D Acceleration Techniques. In preparation for imaging
during continuous table motion, techniques will first be developed for performing highly accelerated acquisitions
during no table motion within a targeted 20 sec. The elliptical centric view order will be combined with 2D
homodyne, 2D SENSE, and time-resolved view-shared acquisition.
2. Parallel Acquisition Techniques Applied During Continuous Table Motion. The accelerated acquisition
methods of Aim #1 will be adapted to continuously moving table imaging. Reconstruction algorithms will be
developed which account for gradient warping, 2D SENSE, and variable FOV acquisition. Coils will be developed
which allow efficient 2D parallel acquisition over an extended FOV.
3. Patient-Specific Acquisition for Continuously Moving Table Peripheral MRA. Methods will be developed to
detect the leading edge of the contrast bolus as it moves along the peripheral vasculature and then to use this
information to alter the patient table motion in real time. A patient-specific bolus profile will be developed with a
test bolus and then used with the full contrast bolus to drive the high spatial resolution diagnostic-quality acquisition.
Eventually this process will be performed using the full contrast bolus alone.
StatusNot started


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.