Failure of FasL Mediated Pathways in Tumor Angiogenesis

Project: Research project

Description

DESCRIPTION (provided by applicant): Colorectal cancer is the second leading cause of cancer deaths in the United States but is preventable through the removal of precancerous adenomatous polyps. New vessel growth (angiogenesis) is a prerequisite for polyp growth beyond 2-3mm3 and is consequently an attractive target for cancer prevention. Endothelial cells are sensitive to killing by epithelial-derived membrane-bound Fas ligand (FasL) but are resistant to killing by cleaved FasL in vitro. Thus, in epithelial tissues that express FasL, such as precancerous colorectal polyps, cleavage of FasL may be required before angiogenesis and tumor progression can proceed. We propose that angiogenesis enabled by FasL cleavage or its loss of expression is an important checkpoint for the development of colorectal cancers. In support of this hypothesis, our preliminary data suggest that: 1) colorectal tumor angiogenesis and tumor growth are stimulated when functional FasL protein is absent; 2) FasL expressed in colorectal cancer cells is cleaved to a non-functional cleaved form by the matrix metalloproteinase, matrilysin and; 3) FasL gene expression is silenced by transforming growth factor beta (TGFbeta) signaling proteins Smad2 and Smad4. These observations provide the foundation of our CENTRAL HYPOTHESIS that inhibition of tumor angiogenesis by epithelial-derived membrane-bound FasL is controlled at the level of FasL protein cleavage or gene silencing. This hypothesis will be tested through the following specific aims: SPECIFIC AIM 1: Demonstrate that epithelial-derived FasL and cleaved FasL differentially regulate endothelial cell apoptosis and tumor growth and tumor angiogenesis in vitro and in vivo; SPECIFIC AIM 2: Demonstrate that cleavage of FasL by matrilysin is required for angiogenesis in colorectal tumors expressing FasL; and SPECIFIC AIM 3: Determine the mechanism through which TGFbeta signaling proteins negatively regulate beta-catenin/Tcf transactivation through the Tcf response element. We are optimistic that successful completion of this proposal will provide new insights into how epithelial-endothelial cells interact to modulate colorectal tumor growth and angiogenesis. In addition, these studies will provide further insight into FasL regulation at both the gene and protein level. These insights may lead to novel and effective therapeutic strategies that target this pathway to prevent angiogenesis, and thereby prevent colorectal tumor development growth and spread.
StatusFinished
Effective start/end date4/1/022/28/08

Funding

  • National Institutes of Health: $215,373.00
  • National Institutes of Health: $212,245.00
  • National Institutes of Health: $216,750.00
  • National Institutes of Health: $207,081.00

Fingerprint

Fas Ligand Protein
Neoplasms
Colorectal Neoplasms
Matrix Metalloproteinase 7
Growth
Endothelial Cells
Polyps
Transforming Growth Factor beta
Smad2 Protein
Smad4 Protein
Adenomatous Polyps
Membranes
beta Catenin
Response Elements
Gene Silencing
Matrix Metalloproteinases
Growth and Development
Transcriptional Activation

ASJC

  • Medicine(all)