Projects per year
Fingerprint
Dive into the research topics where Bradley J Erickson is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
- 1 Similar Profiles
Network
Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
Projects
- 2 Finished
-
Human Imaging Core
National Institute of Diabetes and Digestive and Kidney Diseases
9/15/15 → 6/30/20
Project: Research project
-
Mayo Translational PKD Center (MTPC)
Torres, V. E., Ekker, S. C., Erickson, B. J., Harris, P. C. & Romero, M. F.
National Institute of Diabetes and Digestive and Kidney Diseases
9/30/10 → 9/30/20
Project: Research project
-
A deep learning algorithm for detecting lytic bone lesions of multiple myeloma on CT
Faghani, S., Baffour, F. I., Ringler, M. D., Hamilton-Cave, M., Rouzrokh, P., Moassefi, M., Khosravi, B. & Erickson, B. J., Jan 2023, In: Skeletal Radiology. 52, 1, p. 91-98 8 p.Research output: Contribution to journal › Article › peer-review
-
Multi-center validation of an artificial intelligence system for detection of COVID-19 on chest radiographs in symptomatic patients
Kuo, M. D., Chiu, K. W. H., Wang, D. S., Larici, A. R., Poplavskiy, D., Valentini, A., Napoli, A., Borghesi, A., Ligabue, G., Fang, X. H. B., Wong, H. K. C., Zhang, S., Hunter, J. R., Mousa, A., Infante, A., Elia, L., Golemi, S., Yu, L. H. P., Hui, C. K. M. & Erickson, B. J., Jan 2023, In: European radiology. 33, 1, p. 23-33 11 p.Research output: Contribution to journal › Article › peer-review
Open Access -
A deep learning model for discriminating true progression from pseudoprogression in glioblastoma patients
Moassefi, M., Faghani, S., Conte, G. M., Kowalchuk, R. O., Vahdati, S., Crompton, D. J., Perez-Vega, C., Cabreja, R. A. D., Vora, S. A., Quiñones-Hinojosa, A., Parney, I. F., Trifiletti, D. M. & Erickson, B. J., 2022, (Accepted/In press) In: Journal of neuro-oncology.Research output: Contribution to journal › Article › peer-review
-
Algebraic topology-based machine learning using MRI predicts outcomes in primary sclerosing cholangitis
Singh, Y., Jons, W. A., Eaton, J. E., Vesterhus, M., Karlsen, T., Bjoerk, I., Abildgaard, A., Jorgensen, K. K., Folseraas, T., Little, D., Gulamhusein, A. F., Petrovic, K., Negard, A., Conte, G. M., Sobek, J. D., Jagtap, J., Venkatesh, S. K., Gores, G. J., LaRusso, N. F., Lazaridis, K. N., & 1 others , Dec 2022, In: European radiology experimental. 6, 1, 58.Research output: Contribution to journal › Article › peer-review
Open Access -
A New TDA-based machine learning Classifier Framework for Predicting Hepatic Decompensation from MR Images
Singh, Y., Jons, W., Eaton, J. E., Sobek, J. D., Jagtap, J., Conte, G. M., Fuemmeler, E. G., Zhang, K., Wei, Y., Garcia, D. V. V. & Erickson, B. J., 2022, Medical Imaging 2022: Imaging Informatics for Healthcare, Research, and Applications. Deserno, T. M., Deserno, T. M. & Park, B. J. (eds.). SPIE, 120370I. (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; vol. 12037).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution